#include "Modbus.h" #include "modbus_params.h" #include "sdkconfig.h" #include #include static const char *TAG = "modbus"; #define MB_PORT_NUM (CONFIG_MB_UART_PORT_NUM) // Number of UART port used for Modbus connection #define MB_DEV_SPEED (CONFIG_MB_UART_BAUD_RATE) // The communication speed of the UART static void *master_handle = NULL; // Enumeration of all supported CIDs for device (used in parameter definition table) enum { CID_INP_DATA_0 = 0, CID_HOLD_DATA_0, CID_INP_DATA_1, CID_HOLD_DATA_1, CID_INP_DATA_2, CID_HOLD_DATA_2, CID_HOLD_TEST_REG, CID_RELAY_P1, CID_RELAY_P2, CID_DISCR_P1, #if CONFIG_FMB_EXT_TYPE_SUPPORT CID_HOLD_U8_A, CID_HOLD_U8_B, CID_HOLD_U16_AB, CID_HOLD_U16_BA, CID_HOLD_UINT32_ABCD, CID_HOLD_UINT32_CDAB, CID_HOLD_UINT32_BADC, CID_HOLD_UINT32_DCBA, CID_HOLD_FLOAT_ABCD, CID_HOLD_FLOAT_CDAB, CID_HOLD_FLOAT_BADC, CID_HOLD_FLOAT_DCBA, CID_HOLD_DOUBLE_ABCDEFGH, CID_HOLD_DOUBLE_HGFEDCBA, CID_HOLD_DOUBLE_GHEFCDAB, CID_HOLD_DOUBLE_BADCFEHG, #endif CID_COUNT }; // Enumeration of modbus device addresses accessed by master device enum { MB_DEVICE_ADDR1 = 1 // Only one slave device used for the test (add other slave addresses here) }; #define STR(fieldname) ((const char *)(fieldname)) // The macro to get offset for parameter in the appropriate structure #define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1)) #define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) + 1)) #define COIL_OFFSET(field) ((uint16_t)(offsetof(coil_reg_params_t, field) + 1)) // Discrete offset macro #define DISCR_OFFSET(field) ((uint16_t)(offsetof(discrete_reg_params_t, field) + 1)) #define TEST_INPUT_REG_START(field) (INPUT_OFFSET(field) >> 1) #define TEST_INPUT_REG_SIZE(field) (sizeof(((input_reg_params_t *)0)->field) >> 1) // Example Data (Object) Dictionary for Modbus parameters: // The CID field in the table must be unique. // Modbus Slave Addr field defines slave address of the device with correspond parameter. // Modbus Reg Type - Type of Modbus register area (Holding register, Input Register and such). // Reg Start field defines the start Modbus register number and Reg Size defines the number of registers for the // characteristic accordingly. The Instance Offset defines offset in the appropriate parameter structure that will be // used as instance to save parameter value. Data Type, Data Size specify type of the characteristic and its data size. // Parameter Options field specifies the options that can be used to process parameter value (limits or masks). // Access Mode - can be used to implement custom options for processing of characteristic (Read/Write restrictions, // factory mode values and etc). const mb_parameter_descriptor_t device_parameters[] = { // { CID, Param Name, Units, Modbus Slave Addr, Modbus Reg Type, Reg Start, Reg Size, Instance Offset, Data Type, // Data Size, Parameter Options, Access Mode} {CID_INP_DATA_0, STR("Data_channel_0"), STR("Volts"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, TEST_INPUT_REG_START(input_data0), TEST_INPUT_REG_SIZE(input_data0), INPUT_OFFSET(input_data0), PARAM_TYPE_FLOAT, 4, OPTS(TEST_TEMP_MIN, TEST_TEMP_MAX, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_DATA_0, STR("Humidity_1"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_data0), TEST_HOLD_REG_SIZE(holding_data0), HOLD_OFFSET(holding_data0), PARAM_TYPE_FLOAT, 4, OPTS(TEST_HUMI_MIN, TEST_HUMI_MAX, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_INP_DATA_1, STR("Temperature_1"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, TEST_INPUT_REG_START(input_data1), TEST_INPUT_REG_SIZE(input_data1), INPUT_OFFSET(input_data1), PARAM_TYPE_FLOAT, 4, OPTS(TEST_TEMP_MIN, TEST_TEMP_MAX, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_DATA_1, STR("Humidity_2"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_data1), TEST_HOLD_REG_SIZE(holding_data1), HOLD_OFFSET(holding_data1), PARAM_TYPE_FLOAT, 4, OPTS(TEST_HUMI_MIN, TEST_HUMI_MAX, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_INP_DATA_2, STR("Temperature_2"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, TEST_INPUT_REG_START(input_data2), TEST_INPUT_REG_SIZE(input_data2), INPUT_OFFSET(input_data2), PARAM_TYPE_FLOAT, 4, OPTS(TEST_TEMP_MIN, TEST_TEMP_MAX, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_DATA_2, STR("Humidity_3"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_data2), TEST_HOLD_REG_SIZE(holding_data2), HOLD_OFFSET(holding_data2), PARAM_TYPE_FLOAT, 4, OPTS(TEST_HUMI_MIN, TEST_HUMI_MAX, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_TEST_REG, STR("Test_regs"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(test_regs), TEST_ARR_REG_SZ, HOLD_OFFSET(test_regs), PARAM_TYPE_ASCII, (TEST_ARR_REG_SZ * 2), OPTS(TEST_TEMP_MIN, TEST_TEMP_MAX, TEST_ASCII_BIN), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_RELAY_P1, STR("RelayP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 2, 6, COIL_OFFSET(coils_port0), PARAM_TYPE_U8, 1, OPTS(0xAA, 0x15, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_RELAY_P2, STR("RelayP2"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 10, 6, COIL_OFFSET(coils_port1), PARAM_TYPE_U8, 1, OPTS(0x55, 0x2A, 0), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_DISCR_P1, STR("DiscreteInpP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_DISCRETE, 2, 7, DISCR_OFFSET(discrete_input_port1), PARAM_TYPE_U8, 1, OPTS(0xAA, 0x15, 0), PAR_PERMS_READ_WRITE_TRIGGER}, #if CONFIG_FMB_EXT_TYPE_SUPPORT {CID_HOLD_U8_A, STR("U8_A"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_u8_a), TEST_HOLD_REG_SIZE(holding_u8_a), HOLD_OFFSET(holding_u8_a), PARAM_TYPE_U8_A, (TEST_HOLD_REG_SIZE(holding_u8_a) << 1), OPTS(CHAR_MIN, 0x0055, 0x0055), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_U8_B, STR("U8_B"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_u8_b), TEST_HOLD_REG_SIZE(holding_u8_b), HOLD_OFFSET(holding_u8_b), PARAM_TYPE_U8_B, (TEST_HOLD_REG_SIZE(holding_u8_b) << 1), OPTS(0, 0x5500, 0x5500), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_U16_AB, STR("U16_AB"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_u16_ab), TEST_HOLD_REG_SIZE(holding_u16_ab), HOLD_OFFSET(holding_u16_ab), PARAM_TYPE_U16_AB, (TEST_HOLD_REG_SIZE(holding_u16_ab) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_U16_BA, STR("U16_BA"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_u16_ba), TEST_HOLD_REG_SIZE(holding_u16_ba), HOLD_OFFSET(holding_u16_ba), PARAM_TYPE_U16_BA, (TEST_HOLD_REG_SIZE(holding_u16_ab) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_UINT32_ABCD, STR("UINT32_ABCD"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_uint32_abcd), TEST_HOLD_REG_SIZE(holding_uint32_abcd), HOLD_OFFSET(holding_uint32_abcd), PARAM_TYPE_U32_ABCD, (TEST_HOLD_REG_SIZE(holding_uint32_abcd) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_UINT32_CDAB, STR("UINT32_CDAB"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_uint32_cdab), TEST_HOLD_REG_SIZE(holding_uint32_cdab), HOLD_OFFSET(holding_uint32_cdab), PARAM_TYPE_U32_CDAB, (TEST_HOLD_REG_SIZE(holding_uint32_cdab) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_UINT32_BADC, STR("UINT32_BADC"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_uint32_badc), TEST_HOLD_REG_SIZE(holding_uint32_badc), HOLD_OFFSET(holding_uint32_badc), PARAM_TYPE_U32_BADC, (TEST_HOLD_REG_SIZE(holding_uint32_badc) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_UINT32_DCBA, STR("UINT32_DCBA"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_uint32_dcba), TEST_HOLD_REG_SIZE(holding_uint32_dcba), HOLD_OFFSET(holding_uint32_dcba), PARAM_TYPE_U32_DCBA, (TEST_HOLD_REG_SIZE(holding_uint32_dcba) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_FLOAT_ABCD, STR("FLOAT_ABCD"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_float_abcd), TEST_HOLD_REG_SIZE(holding_float_abcd), HOLD_OFFSET(holding_float_abcd), PARAM_TYPE_FLOAT_ABCD, (TEST_HOLD_REG_SIZE(holding_float_abcd) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_FLOAT_CDAB, STR("FLOAT_CDAB"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_float_cdab), TEST_HOLD_REG_SIZE(holding_float_cdab), HOLD_OFFSET(holding_float_cdab), PARAM_TYPE_FLOAT_CDAB, (TEST_HOLD_REG_SIZE(holding_float_cdab) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_FLOAT_BADC, STR("FLOAT_BADC"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_float_badc), TEST_HOLD_REG_SIZE(holding_float_badc), HOLD_OFFSET(holding_float_badc), PARAM_TYPE_FLOAT_BADC, (TEST_HOLD_REG_SIZE(holding_float_badc) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_FLOAT_DCBA, STR("FLOAT_DCBA"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_float_dcba), TEST_HOLD_REG_SIZE(holding_float_dcba), HOLD_OFFSET(holding_float_dcba), PARAM_TYPE_FLOAT_DCBA, (TEST_HOLD_REG_SIZE(holding_float_dcba) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_DOUBLE_ABCDEFGH, STR("DOUBLE_ABCDEFGH"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_double_abcdefgh), TEST_HOLD_REG_SIZE(holding_double_abcdefgh), HOLD_OFFSET(holding_double_abcdefgh), PARAM_TYPE_DOUBLE_ABCDEFGH, (TEST_HOLD_REG_SIZE(holding_double_abcdefgh) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_DOUBLE_HGFEDCBA, STR("DOUBLE_HGFEDCBA"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_double_hgfedcba), TEST_HOLD_REG_SIZE(holding_double_hgfedcba), HOLD_OFFSET(holding_double_hgfedcba), PARAM_TYPE_DOUBLE_HGFEDCBA, (TEST_HOLD_REG_SIZE(holding_double_hgfedcba) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_DOUBLE_GHEFCDAB, STR("DOUBLE_GHEFCDAB"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_double_ghefcdab), TEST_HOLD_REG_SIZE(holding_double_ghefcdab), HOLD_OFFSET(holding_double_ghefcdab), PARAM_TYPE_DOUBLE_GHEFCDAB, (TEST_HOLD_REG_SIZE(holding_double_ghefcdab) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER}, {CID_HOLD_DOUBLE_BADCFEHG, STR("DOUBLE_BADCFEHG"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TEST_HOLD_REG_START(holding_double_badcfehg), TEST_HOLD_REG_SIZE(holding_double_badcfehg), HOLD_OFFSET(holding_double_badcfehg), PARAM_TYPE_DOUBLE_BADCFEHG, (TEST_HOLD_REG_SIZE(holding_double_badcfehg) << 1), OPTS(0, TEST_VALUE, TEST_VALUE), PAR_PERMS_READ_WRITE_TRIGGER} #endif }; // Modbus master initialization static esp_err_t master_init(void) { // Initialize Modbus controller mb_communication_info_t comm; comm.ser_opts.port = MB_PORT_NUM; #if CONFIG_MB_COMM_MODE_ASCII comm.ser_opts.mode = MB_ASCII; #elif CONFIG_MB_COMM_MODE_RTU comm.ser_opts.mode = MB_RTU; #endif comm.ser_opts.baudrate = MB_DEV_SPEED; comm.ser_opts.parity = MB_PARITY_NONE; comm.ser_opts.uid = 0; comm.ser_opts.response_tout_ms = 1000; comm.ser_opts.data_bits = UART_DATA_8_BITS; comm.ser_opts.stop_bits = UART_STOP_BITS_1; esp_err_t err = mbc_master_create_serial(&comm, &master_handle); MB_RETURN_ON_FALSE((master_handle != NULL), ESP_ERR_INVALID_STATE, TAG, "mb controller initialization fail."); MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG, "mb controller initialization fail, returns(0x%x).", (int)err); // Set UART pin numbers err = uart_set_pin(static_cast(MB_PORT_NUM), CONFIG_MB_UART_TXD, CONFIG_MB_UART_RXD, CONFIG_MB_UART_RTS, UART_PIN_NO_CHANGE); MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG, "mb serial set pin failure, uart_set_pin() returned (0x%x).", (int)err); err = mbc_master_start(master_handle); MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG, "mb controller start fail, returned (0x%x).", (int)err); // Set driver mode to Half Duplex err = uart_set_mode(static_cast(MB_PORT_NUM), UART_MODE_RS485_HALF_DUPLEX); MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG, "mb serial set mode failure, uart_set_mode() returned (0x%x).", (int)err); vTaskDelay(5); err = mbc_master_set_descriptor(master_handle, &device_parameters[0], num_device_parameters); MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG, "mb controller set descriptor fail, returns(0x%x).", (int)err); ESP_LOGI(TAG, "Modbus master stack initialized..."); return err; } Modbus::Modbus() { const uart_port_t uart_num = UART_NUM_2; uart_config_t uart_config = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS, .rx_flow_ctrl_thresh = 122, }; // Configure UART parameters ESP_ERROR_CHECK(uart_param_config(uart_num, &uart_config)); ESP_ERROR_CHECK(uart_set_pin(UART_NUM_2, 17, 16, 7, 8)); // Setup UART buffered IO with event queue const int uart_buffer_size = (1024 * 2); QueueHandle_t uart_queue; // Install UART driver using an event queue here ESP_ERROR_CHECK(uart_driver_install(UART_NUM_2, uart_buffer_size, uart_buffer_size, 10, &uart_queue, 0)); }