update code.

This commit is contained in:
luocai
2024-09-05 11:22:29 +08:00
parent 268d8160ea
commit 76d9e6c8cb
29 changed files with 8798 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,441 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs echo control (suppression) with fft routines in fixed-point.
#ifndef MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
#define MODULES_AUDIO_PROCESSING_AECM_AECM_CORE_H_
extern "C" {
#include "common_audio/ring_buffer.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
}
#include "modules/audio_processing/aecm/aecm_defines.h"
struct RealFFT;
namespace webrtc {
#ifdef _MSC_VER // visual c++
#define ALIGN8_BEG __declspec(align(8))
#define ALIGN8_END
#else // gcc or icc
#define ALIGN8_BEG
#define ALIGN8_END __attribute__((aligned(8)))
#endif
typedef struct {
int16_t real;
int16_t imag;
} ComplexInt16;
typedef struct {
int farBufWritePos;
int farBufReadPos;
int knownDelay;
int lastKnownDelay;
int firstVAD; // Parameter to control poorly initialized channels
RingBuffer* farFrameBuf;
RingBuffer* nearNoisyFrameBuf;
RingBuffer* nearCleanFrameBuf;
RingBuffer* outFrameBuf;
int16_t farBuf[FAR_BUF_LEN];
int16_t mult;
uint32_t seed;
// Delay estimation variables
void* delay_estimator_farend;
void* delay_estimator;
uint16_t currentDelay;
// Far end history variables
// TODO(bjornv): Replace `far_history` with ring_buffer.
uint16_t far_history[PART_LEN1 * MAX_DELAY];
int far_history_pos;
int far_q_domains[MAX_DELAY];
int16_t nlpFlag;
int16_t fixedDelay;
uint32_t totCount;
int16_t dfaCleanQDomain;
int16_t dfaCleanQDomainOld;
int16_t dfaNoisyQDomain;
int16_t dfaNoisyQDomainOld;
int16_t nearLogEnergy[MAX_BUF_LEN];
int16_t farLogEnergy;
int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
int16_t echoStoredLogEnergy[MAX_BUF_LEN];
// The extra 16 or 32 bytes in the following buffers are for alignment based
// Neon code.
// It's designed this way since the current GCC compiler can't align a
// buffer in 16 or 32 byte boundaries properly.
int16_t channelStored_buf[PART_LEN1 + 8];
int16_t channelAdapt16_buf[PART_LEN1 + 8];
int32_t channelAdapt32_buf[PART_LEN1 + 8];
int16_t xBuf_buf[PART_LEN2 + 16]; // farend
int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
int16_t outBuf_buf[PART_LEN + 8];
// Pointers to the above buffers
int16_t* channelStored;
int16_t* channelAdapt16;
int32_t* channelAdapt32;
int16_t* xBuf;
int16_t* dBufClean;
int16_t* dBufNoisy;
int16_t* outBuf;
int32_t echoFilt[PART_LEN1];
int16_t nearFilt[PART_LEN1];
int32_t noiseEst[PART_LEN1];
int noiseEstTooLowCtr[PART_LEN1];
int noiseEstTooHighCtr[PART_LEN1];
int16_t noiseEstCtr;
int16_t cngMode;
int32_t mseAdaptOld;
int32_t mseStoredOld;
int32_t mseThreshold;
int16_t farEnergyMin;
int16_t farEnergyMax;
int16_t farEnergyMaxMin;
int16_t farEnergyVAD;
int16_t farEnergyMSE;
int currentVADValue;
int16_t vadUpdateCount;
int16_t startupState;
int16_t mseChannelCount;
int16_t supGain;
int16_t supGainOld;
int16_t supGainErrParamA;
int16_t supGainErrParamD;
int16_t supGainErrParamDiffAB;
int16_t supGainErrParamDiffBD;
struct RealFFT* real_fft;
#ifdef AEC_DEBUG
FILE* farFile;
FILE* nearFile;
FILE* outFile;
#endif
} AecmCore;
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CreateCore()
//
// Allocates the memory needed by the AECM. The memory needs to be
// initialized separately using the WebRtcAecm_InitCore() function.
// Returns a pointer to the instance and a nullptr at failure.
AecmCore* WebRtcAecm_CreateCore();
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_InitCore(...)
//
// This function initializes the AECM instant created with
// WebRtcAecm_CreateCore()
// Input:
// - aecm : Pointer to the AECM instance
// - samplingFreq : Sampling Frequency
//
// Output:
// - aecm : Initialized instance
//
// Return value : 0 - Ok
// -1 - Error
//
int WebRtcAecm_InitCore(AecmCore* const aecm, int samplingFreq);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_FreeCore(...)
//
// This function releases the memory allocated by WebRtcAecm_CreateCore()
// Input:
// - aecm : Pointer to the AECM instance
//
void WebRtcAecm_FreeCore(AecmCore* aecm);
int WebRtcAecm_Control(AecmCore* aecm, int delay, int nlpFlag);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_InitEchoPathCore(...)
//
// This function resets the echo channel adaptation with the specified channel.
// Input:
// - aecm : Pointer to the AECM instance
// - echo_path : Pointer to the data that should initialize the echo
// path
//
// Output:
// - aecm : Initialized instance
//
void WebRtcAecm_InitEchoPathCore(AecmCore* aecm, const int16_t* echo_path);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_ProcessFrame(...)
//
// This function processes frames and sends blocks to
// WebRtcAecm_ProcessBlock(...)
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one frame of echo signal
// - nearendNoisy : In buffer containing one frame of nearend+echo signal
// without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal
// with NS
//
// Output:
// - out : Out buffer, one frame of nearend signal :
//
//
int WebRtcAecm_ProcessFrame(AecmCore* aecm,
const int16_t* farend,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* out);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_ProcessBlock(...)
//
// This function is called for every block within one frame
// This function is called by WebRtcAecm_ProcessFrame(...)
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one block of echo signal
// - nearendNoisy : In buffer containing one frame of nearend+echo signal
// without NS
// - nearendClean : In buffer containing one frame of nearend+echo signal
// with NS
//
// Output:
// - out : Out buffer, one block of nearend signal :
//
//
int WebRtcAecm_ProcessBlock(AecmCore* aecm,
const int16_t* farend,
const int16_t* nearendNoisy,
const int16_t* noisyClean,
int16_t* out);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_BufferFarFrame()
//
// Inserts a frame of data into farend buffer.
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one frame of farend signal
// - farLen : Length of frame
//
void WebRtcAecm_BufferFarFrame(AecmCore* const aecm,
const int16_t* const farend,
int farLen);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_FetchFarFrame()
//
// Read the farend buffer to account for known delay
//
// Inputs:
// - aecm : Pointer to the AECM instance
// - farend : In buffer containing one frame of farend signal
// - farLen : Length of frame
// - knownDelay : known delay
//
void WebRtcAecm_FetchFarFrame(AecmCore* const aecm,
int16_t* const farend,
int farLen,
int knownDelay);
// All the functions below are intended to be private
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_UpdateFarHistory()
//
// Moves the pointer to the next entry and inserts `far_spectrum` and
// corresponding Q-domain in its buffer.
//
// Inputs:
// - self : Pointer to the delay estimation instance
// - far_spectrum : Pointer to the far end spectrum
// - far_q : Q-domain of far end spectrum
//
void WebRtcAecm_UpdateFarHistory(AecmCore* self,
uint16_t* far_spectrum,
int far_q);
////////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_AlignedFarend()
//
// Returns a pointer to the far end spectrum aligned to current near end
// spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
// called before AlignedFarend(...). Otherwise, you get the pointer to the
// previous frame. The memory is only valid until the next call of
// WebRtc_DelayEstimatorProcessFix(...).
//
// Inputs:
// - self : Pointer to the AECM instance.
// - delay : Current delay estimate.
//
// Output:
// - far_q : The Q-domain of the aligned far end spectrum
//
// Return value:
// - far_spectrum : Pointer to the aligned far end spectrum
// NULL - Error
//
const uint16_t* WebRtcAecm_AlignedFarend(AecmCore* self, int* far_q, int delay);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcSuppressionGain()
//
// This function calculates the suppression gain that is used in the
// Wiener filter.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
//
// Return value:
// - supGain : Suppression gain with which to scale the noise
// level (Q14).
//
int16_t WebRtcAecm_CalcSuppressionGain(AecmCore* const aecm);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcEnergies()
//
// This function calculates the log of energies for nearend, farend and
// estimated echoes. There is also an update of energy decision levels,
// i.e. internal VAD.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
// - far_spectrum : Pointer to farend spectrum.
// - far_q : Q-domain of farend spectrum.
// - nearEner : Near end energy for current block in
// Q(aecm->dfaQDomain).
//
// Output:
// - echoEst : Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_CalcEnergies(AecmCore* aecm,
const uint16_t* far_spectrum,
int16_t far_q,
uint32_t nearEner,
int32_t* echoEst);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_CalcStepSize()
//
// This function calculates the step size used in channel estimation
//
// Inputs:
// - aecm : Pointer to the AECM instance.
//
// Return value:
// - mu : Stepsize in log2(), i.e. number of shifts.
//
int16_t WebRtcAecm_CalcStepSize(AecmCore* const aecm);
///////////////////////////////////////////////////////////////////////////////
// WebRtcAecm_UpdateChannel(...)
//
// This function performs channel estimation.
// NLMS and decision on channel storage.
//
// Inputs:
// - aecm : Pointer to the AECM instance.
// - far_spectrum : Absolute value of the farend signal in Q(far_q)
// - far_q : Q-domain of the farend signal
// - dfa : Absolute value of the nearend signal
// (Q[aecm->dfaQDomain])
// - mu : NLMS step size.
// Input/Output:
// - echoEst : Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_UpdateChannel(AecmCore* aecm,
const uint16_t* far_spectrum,
int16_t far_q,
const uint16_t* const dfa,
int16_t mu,
int32_t* echoEst);
extern const int16_t WebRtcAecm_kCosTable[];
extern const int16_t WebRtcAecm_kSinTable[];
///////////////////////////////////////////////////////////////////////////////
// Some function pointers, for internal functions shared by ARM NEON and
// generic C code.
//
typedef void (*CalcLinearEnergies)(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echoEst,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored);
extern CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
typedef void (*StoreAdaptiveChannel)(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est);
extern StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
typedef void (*ResetAdaptiveChannel)(AecmCore* aecm);
extern ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
// For the above function pointers, functions for generic platforms are declared
// and defined as static in file aecm_core.c, while those for ARM Neon platforms
// are declared below and defined in file aecm_core_neon.c.
#if defined(WEBRTC_HAS_NEON)
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored);
void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est);
void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm);
#endif
#if defined(MIPS32_LE)
void WebRtcAecm_CalcLinearEnergies_mips(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored);
#if defined(MIPS_DSP_R1_LE)
void WebRtcAecm_StoreAdaptiveChannel_mips(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est);
void WebRtcAecm_ResetAdaptiveChannel_mips(AecmCore* aecm);
#endif
#endif
} // namespace webrtc
#endif

View File

@ -0,0 +1,672 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stddef.h>
#include <stdlib.h>
#include "modules/audio_processing/aecm/aecm_core.h"
extern "C" {
#include "common_audio/ring_buffer.h"
#include "common_audio/signal_processing/include/real_fft.h"
}
#include "modules/audio_processing/aecm/echo_control_mobile.h"
#include "modules/audio_processing/utility/delay_estimator_wrapper.h"
extern "C" {
#include "system_wrappers/include/cpu_features_wrapper.h"
}
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/sanitizer.h"
namespace webrtc {
namespace {
// Square root of Hanning window in Q14.
static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, 3562, 3951,
4337, 4720, 5101, 5478, 5853, 6224, 6591, 6954, 7313, 7668, 8019,
8364, 8705, 9040, 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, 13773, 13985, 14189,
14384, 14571, 14749, 14918, 15079, 15231, 15373, 15506, 15631, 15746, 15851,
15947, 16034, 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384};
#ifdef AECM_WITH_ABS_APPROX
// Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
static const uint16_t kAlpha1 = 32584;
// Q15 beta = 0.12967166976970 const Factor for magnitude approximation
static const uint16_t kBeta1 = 4249;
// Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
static const uint16_t kAlpha2 = 30879;
// Q15 beta = 0.33787806009150 const Factor for magnitude approximation
static const uint16_t kBeta2 = 11072;
// Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
static const uint16_t kAlpha3 = 26951;
// Q15 beta = 0.57762063060713 const Factor for magnitude approximation
static const uint16_t kBeta3 = 18927;
#endif
static const int16_t kNoiseEstQDomain = 15;
static const int16_t kNoiseEstIncCount = 5;
static void ComfortNoise(AecmCore* aecm,
const uint16_t* dfa,
ComplexInt16* out,
const int16_t* lambda) {
int16_t i;
int16_t tmp16;
int32_t tmp32;
int16_t randW16[PART_LEN];
int16_t uReal[PART_LEN1];
int16_t uImag[PART_LEN1];
int32_t outLShift32;
int16_t noiseRShift16[PART_LEN1];
int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain;
int16_t minTrackShift;
RTC_DCHECK_GE(shiftFromNearToNoise, 0);
RTC_DCHECK_LT(shiftFromNearToNoise, 16);
if (aecm->noiseEstCtr < 100) {
// Track the minimum more quickly initially.
aecm->noiseEstCtr++;
minTrackShift = 6;
} else {
minTrackShift = 9;
}
// Estimate noise power.
for (i = 0; i < PART_LEN1; i++) {
// Shift to the noise domain.
tmp32 = (int32_t)dfa[i];
outLShift32 = tmp32 << shiftFromNearToNoise;
if (outLShift32 < aecm->noiseEst[i]) {
// Reset "too low" counter
aecm->noiseEstTooLowCtr[i] = 0;
// Track the minimum.
if (aecm->noiseEst[i] < (1 << minTrackShift)) {
// For small values, decrease noiseEst[i] every
// `kNoiseEstIncCount` block. The regular approach below can not
// go further down due to truncation.
aecm->noiseEstTooHighCtr[i]++;
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) {
aecm->noiseEst[i]--;
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
}
} else {
aecm->noiseEst[i] -=
((aecm->noiseEst[i] - outLShift32) >> minTrackShift);
}
} else {
// Reset "too high" counter
aecm->noiseEstTooHighCtr[i] = 0;
// Ramp slowly upwards until we hit the minimum again.
if ((aecm->noiseEst[i] >> 19) > 0) {
// Avoid overflow.
// Multiplication with 2049 will cause wrap around. Scale
// down first and then multiply
aecm->noiseEst[i] >>= 11;
aecm->noiseEst[i] *= 2049;
} else if ((aecm->noiseEst[i] >> 11) > 0) {
// Large enough for relative increase
aecm->noiseEst[i] *= 2049;
aecm->noiseEst[i] >>= 11;
} else {
// Make incremental increases based on size every
// `kNoiseEstIncCount` block
aecm->noiseEstTooLowCtr[i]++;
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) {
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
}
}
}
}
for (i = 0; i < PART_LEN1; i++) {
tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
if (tmp32 > 32767) {
tmp32 = 32767;
aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
}
noiseRShift16[i] = (int16_t)tmp32;
tmp16 = ONE_Q14 - lambda[i];
noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14);
}
// Generate a uniform random array on [0 2^15-1].
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
// Generate noise according to estimated energy.
uReal[0] = 0; // Reject LF noise.
uImag[0] = 0;
for (i = 1; i < PART_LEN1; i++) {
// Get a random index for the cos and sin tables over [0 359].
tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
// Tables are in Q13.
uReal[i] =
(int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> 13);
uImag[i] =
(int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> 13);
}
uImag[PART_LEN] = 0;
for (i = 0; i < PART_LEN1; i++) {
out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
}
}
static void WindowAndFFT(AecmCore* aecm,
int16_t* fft,
const int16_t* time_signal,
ComplexInt16* freq_signal,
int time_signal_scaling) {
int i = 0;
// FFT of signal
for (i = 0; i < PART_LEN; i++) {
// Window time domain signal and insert into real part of
// transformation array `fft`
int16_t scaled_time_signal = time_signal[i] * (1 << time_signal_scaling);
fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
scaled_time_signal = time_signal[i + PART_LEN] * (1 << time_signal_scaling);
fft[PART_LEN + i] = (int16_t)((scaled_time_signal *
WebRtcAecm_kSqrtHanning[PART_LEN - i]) >>
14);
}
// Do forward FFT, then take only the first PART_LEN complex samples,
// and change signs of the imaginary parts.
WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal);
for (i = 0; i < PART_LEN; i++) {
freq_signal[i].imag = -freq_signal[i].imag;
}
}
static void InverseFFTAndWindow(AecmCore* aecm,
int16_t* fft,
ComplexInt16* efw,
int16_t* output,
const int16_t* nearendClean) {
int i, j, outCFFT;
int32_t tmp32no1;
// Reuse `efw` for the inverse FFT output after transferring
// the contents to `fft`.
int16_t* ifft_out = (int16_t*)efw;
// Synthesis
for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) {
fft[j] = efw[i].real;
fft[j + 1] = -efw[i].imag;
}
fft[0] = efw[0].real;
fft[1] = -efw[0].imag;
fft[PART_LEN2] = efw[PART_LEN].real;
fft[PART_LEN2 + 1] = -efw[PART_LEN].imag;
// Inverse FFT. Keep outCFFT to scale the samples in the next block.
outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
for (i = 0; i < PART_LEN; i++) {
ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
outCFFT - aecm->dfaCleanQDomain);
output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
tmp32no1 + aecm->outBuf[i],
WEBRTC_SPL_WORD16_MIN);
tmp32no1 =
(ifft_out[PART_LEN + i] * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, outCFFT - aecm->dfaCleanQDomain);
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, tmp32no1,
WEBRTC_SPL_WORD16_MIN);
}
// Copy the current block to the old position
// (aecm->outBuf is shifted elsewhere)
memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN,
sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL) {
memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN,
sizeof(int16_t) * PART_LEN);
}
}
// Transforms a time domain signal into the frequency domain, outputting the
// complex valued signal, absolute value and sum of absolute values.
//
// time_signal [in] Pointer to time domain signal
// freq_signal_real [out] Pointer to real part of frequency domain array
// freq_signal_imag [out] Pointer to imaginary part of frequency domain
// array
// freq_signal_abs [out] Pointer to absolute value of frequency domain
// array
// freq_signal_sum_abs [out] Pointer to the sum of all absolute values in
// the frequency domain array
// return value The Q-domain of current frequency values
//
static int TimeToFrequencyDomain(AecmCore* aecm,
const int16_t* time_signal,
ComplexInt16* freq_signal,
uint16_t* freq_signal_abs,
uint32_t* freq_signal_sum_abs) {
int i = 0;
int time_signal_scaling = 0;
int32_t tmp32no1 = 0;
int32_t tmp32no2 = 0;
// In fft_buf, +16 for 32-byte alignment.
int16_t fft_buf[PART_LEN4 + 16];
int16_t* fft = (int16_t*)(((uintptr_t)fft_buf + 31) & ~31);
int16_t tmp16no1;
#ifndef WEBRTC_ARCH_ARM_V7
int16_t tmp16no2;
#endif
#ifdef AECM_WITH_ABS_APPROX
int16_t max_value = 0;
int16_t min_value = 0;
uint16_t alpha = 0;
uint16_t beta = 0;
#endif
#ifdef AECM_DYNAMIC_Q
tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2);
time_signal_scaling = WebRtcSpl_NormW16(tmp16no1);
#endif
WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling);
// Extract imaginary and real part, calculate the magnitude for
// all frequency bins
freq_signal[0].imag = 0;
freq_signal[PART_LEN].imag = 0;
freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
freq_signal_abs[PART_LEN] =
(uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[PART_LEN].real);
(*freq_signal_sum_abs) =
(uint32_t)(freq_signal_abs[0]) + (uint32_t)(freq_signal_abs[PART_LEN]);
for (i = 1; i < PART_LEN; i++) {
if (freq_signal[i].real == 0) {
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
} else if (freq_signal[i].imag == 0) {
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
} else {
// Approximation for magnitude of complex fft output
// magn = sqrt(real^2 + imag^2)
// magn ~= alpha * max(`imag`,`real`) + beta * min(`imag`,`real`)
//
// The parameters alpha and beta are stored in Q15
#ifdef AECM_WITH_ABS_APPROX
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
if (tmp16no1 > tmp16no2) {
max_value = tmp16no1;
min_value = tmp16no2;
} else {
max_value = tmp16no2;
min_value = tmp16no1;
}
// Magnitude in Q(-6)
if ((max_value >> 2) > min_value) {
alpha = kAlpha1;
beta = kBeta1;
} else if ((max_value >> 1) > min_value) {
alpha = kAlpha2;
beta = kBeta2;
} else {
alpha = kAlpha3;
beta = kBeta3;
}
tmp16no1 = (int16_t)((max_value * alpha) >> 15);
tmp16no2 = (int16_t)((min_value * beta) >> 15);
freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2;
#else
#ifdef WEBRTC_ARCH_ARM_V7
__asm __volatile(
"smulbb %[tmp32no1], %[real], %[real]\n\t"
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
: [tmp32no1] "+&r"(tmp32no1), [tmp32no2] "=r"(tmp32no2)
: [real] "r"(freq_signal[i].real), [imag] "r"(freq_signal[i].imag));
#else
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
tmp32no1 = tmp16no1 * tmp16no1;
tmp32no2 = tmp16no2 * tmp16no2;
tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
#endif // WEBRTC_ARCH_ARM_V7
tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
freq_signal_abs[i] = (uint16_t)tmp32no1;
#endif // AECM_WITH_ABS_APPROX
}
(*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
}
return time_signal_scaling;
}
} // namespace
int RTC_NO_SANITIZE("signed-integer-overflow") // bugs.webrtc.org/8200
WebRtcAecm_ProcessBlock(AecmCore* aecm,
const int16_t* farend,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* output) {
int i;
uint32_t xfaSum;
uint32_t dfaNoisySum;
uint32_t dfaCleanSum;
uint32_t echoEst32Gained;
uint32_t tmpU32;
int32_t tmp32no1;
uint16_t xfa[PART_LEN1];
uint16_t dfaNoisy[PART_LEN1];
uint16_t dfaClean[PART_LEN1];
uint16_t* ptrDfaClean = dfaClean;
const uint16_t* far_spectrum_ptr = NULL;
// 32 byte aligned buffers (with +8 or +16).
// TODO(kma): define fft with ComplexInt16.
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
int32_t echoEst32_buf[PART_LEN1 + 8];
int32_t dfw_buf[PART_LEN2 + 8];
int32_t efw_buf[PART_LEN2 + 8];
int16_t* fft = (int16_t*)(((uintptr_t)fft_buf + 31) & ~31);
int32_t* echoEst32 = (int32_t*)(((uintptr_t)echoEst32_buf + 31) & ~31);
ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31);
ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31);
int16_t hnl[PART_LEN1];
int16_t numPosCoef = 0;
int16_t nlpGain = ONE_Q14;
int delay;
int16_t tmp16no1;
int16_t tmp16no2;
int16_t mu;
int16_t supGain;
int16_t zeros32, zeros16;
int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf;
int far_q;
int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff;
const int kMinPrefBand = 4;
const int kMaxPrefBand = 24;
int32_t avgHnl32 = 0;
// Determine startup state. There are three states:
// (0) the first CONV_LEN blocks
// (1) another CONV_LEN blocks
// (2) the rest
if (aecm->startupState < 2) {
aecm->startupState =
(aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2);
}
// END: Determine startup state
// Buffer near and far end signals
memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
if (nearendClean != NULL) {
memcpy(aecm->dBufClean + PART_LEN, nearendClean,
sizeof(int16_t) * PART_LEN);
}
// Transform far end signal from time domain to frequency domain.
far_q = TimeToFrequencyDomain(aecm, aecm->xBuf, dfw, xfa, &xfaSum);
// Transform noisy near end signal from time domain to frequency domain.
zerosDBufNoisy =
TimeToFrequencyDomain(aecm, aecm->dBufNoisy, dfw, dfaNoisy, &dfaNoisySum);
aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
if (nearendClean == NULL) {
ptrDfaClean = dfaNoisy;
aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
dfaCleanSum = dfaNoisySum;
} else {
// Transform clean near end signal from time domain to frequency domain.
zerosDBufClean = TimeToFrequencyDomain(aecm, aecm->dBufClean, dfw, dfaClean,
&dfaCleanSum);
aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
}
// Get the delay
// Save far-end history and estimate delay
WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1,
far_q) == -1) {
return -1;
}
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, dfaNoisy,
PART_LEN1, zerosDBufNoisy);
if (delay == -1) {
return -1;
} else if (delay == -2) {
// If the delay is unknown, we assume zero.
// NOTE: this will have to be adjusted if we ever add lookahead.
delay = 0;
}
if (aecm->fixedDelay >= 0) {
// Use fixed delay
delay = aecm->fixedDelay;
}
// Get aligned far end spectrum
far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
zerosXBuf = (int16_t)far_q;
if (far_spectrum_ptr == NULL) {
return -1;
}
// Calculate log(energy) and update energy threshold levels
WebRtcAecm_CalcEnergies(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisySum,
echoEst32);
// Calculate stepsize
mu = WebRtcAecm_CalcStepSize(aecm);
// Update counters
aecm->totCount++;
// This is the channel estimation algorithm.
// It is base on NLMS but has a variable step length,
// which was calculated above.
WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu,
echoEst32);
supGain = WebRtcAecm_CalcSuppressionGain(aecm);
// Calculate Wiener filter hnl[]
for (i = 0; i < PART_LEN1; i++) {
// Far end signal through channel estimate in Q8
// How much can we shift right to preserve resolution
tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
aecm->echoFilt[i] +=
rtc::dchecked_cast<int32_t>((int64_t{tmp32no1} * 50) >> 8);
zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
zeros16 = WebRtcSpl_NormW16(supGain) + 1;
if (zeros32 + zeros16 > 16) {
// Multiplication is safe
// Result in
// Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
// aecm->xfaQDomainBuf[diff])
echoEst32Gained =
WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], (uint16_t)supGain);
resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
} else {
tmp16no1 = 17 - zeros32 - zeros16;
resolutionDiff =
14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
if (zeros32 > tmp16no1) {
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
supGain >> tmp16no1);
} else {
// Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
}
}
zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]);
RTC_DCHECK_GE(zeros16, 0); // `zeros16` is a norm, hence non-negative.
dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld;
if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) {
tmp16no1 = aecm->nearFilt[i] * (1 << zeros16);
qDomainDiff = zeros16 - dfa_clean_q_domain_diff;
tmp16no2 = ptrDfaClean[i] >> -qDomainDiff;
} else {
tmp16no1 = dfa_clean_q_domain_diff < 0
? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff
: aecm->nearFilt[i] * (1 << dfa_clean_q_domain_diff);
qDomainDiff = 0;
tmp16no2 = ptrDfaClean[i];
}
tmp32no1 = (int32_t)(tmp16no2 - tmp16no1);
tmp16no2 = (int16_t)(tmp32no1 >> 4);
tmp16no2 += tmp16no1;
zeros16 = WebRtcSpl_NormW16(tmp16no2);
if ((tmp16no2) & (-qDomainDiff > zeros16)) {
aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX;
} else {
aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 * (1 << -qDomainDiff)
: tmp16no2 >> qDomainDiff;
}
// Wiener filter coefficients, resulting hnl in Q14
if (echoEst32Gained == 0) {
hnl[i] = ONE_Q14;
} else if (aecm->nearFilt[i] == 0) {
hnl[i] = 0;
} else {
// Multiply the suppression gain
// Rounding
echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
tmpU32 =
WebRtcSpl_DivU32U16(echoEst32Gained, (uint16_t)aecm->nearFilt[i]);
// Current resolution is
// Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
// Make sure we are in Q14
tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
if (tmp32no1 > ONE_Q14) {
hnl[i] = 0;
} else if (tmp32no1 < 0) {
hnl[i] = ONE_Q14;
} else {
// 1-echoEst/dfa
hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
if (hnl[i] < 0) {
hnl[i] = 0;
}
}
}
if (hnl[i]) {
numPosCoef++;
}
}
// Only in wideband. Prevent the gain in upper band from being larger than
// in lower band.
if (aecm->mult == 2) {
// TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
// speech distortion in double-talk.
for (i = 0; i < PART_LEN1; i++) {
hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14);
}
for (i = kMinPrefBand; i <= kMaxPrefBand; i++) {
avgHnl32 += (int32_t)hnl[i];
}
RTC_DCHECK_GT(kMaxPrefBand - kMinPrefBand + 1, 0);
avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
for (i = kMaxPrefBand; i < PART_LEN1; i++) {
if (hnl[i] > (int16_t)avgHnl32) {
hnl[i] = (int16_t)avgHnl32;
}
}
}
// Calculate NLP gain, result is in Q14
if (aecm->nlpFlag) {
for (i = 0; i < PART_LEN1; i++) {
// Truncate values close to zero and one.
if (hnl[i] > NLP_COMP_HIGH) {
hnl[i] = ONE_Q14;
} else if (hnl[i] < NLP_COMP_LOW) {
hnl[i] = 0;
}
// Remove outliers
if (numPosCoef < 3) {
nlpGain = 0;
} else {
nlpGain = ONE_Q14;
}
// NLP
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) {
hnl[i] = ONE_Q14;
} else {
hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14);
}
// multiply with Wiener coefficients
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
} else {
// multiply with Wiener coefficients
for (i = 0; i < PART_LEN1; i++) {
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
hnl[i], 14));
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
hnl[i], 14));
}
}
if (aecm->cngMode == AecmTrue) {
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
}
InverseFFTAndWindow(aecm, fft, efw, output, nearendClean);
return 0;
}
} // namespace webrtc

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,206 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <arm_neon.h>
#include "common_audio/signal_processing/include/real_fft.h"
#include "modules/audio_processing/aecm/aecm_core.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// TODO(kma): Re-write the corresponding assembly file, the offset
// generating script and makefile, to replace these C functions.
static inline void AddLanes(uint32_t* ptr, uint32x4_t v) {
#if defined(WEBRTC_ARCH_ARM64)
*(ptr) = vaddvq_u32(v);
#else
uint32x2_t tmp_v;
tmp_v = vadd_u32(vget_low_u32(v), vget_high_u32(v));
tmp_v = vpadd_u32(tmp_v, tmp_v);
*(ptr) = vget_lane_u32(tmp_v, 0);
#endif
}
} // namespace
void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est,
uint32_t* far_energy,
uint32_t* echo_energy_adapt,
uint32_t* echo_energy_stored) {
int16_t* start_stored_p = aecm->channelStored;
int16_t* start_adapt_p = aecm->channelAdapt16;
int32_t* echo_est_p = echo_est;
const int16_t* end_stored_p = aecm->channelStored + PART_LEN;
const uint16_t* far_spectrum_p = far_spectrum;
int16x8_t store_v, adapt_v;
uint16x8_t spectrum_v;
uint32x4_t echo_est_v_low, echo_est_v_high;
uint32x4_t far_energy_v, echo_stored_v, echo_adapt_v;
far_energy_v = vdupq_n_u32(0);
echo_adapt_v = vdupq_n_u32(0);
echo_stored_v = vdupq_n_u32(0);
// Get energy for the delayed far end signal and estimated
// echo using both stored and adapted channels.
// The C code:
// for (i = 0; i < PART_LEN1; i++) {
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
// far_spectrum[i]);
// (*far_energy) += (uint32_t)(far_spectrum[i]);
// *echo_energy_adapt += aecm->channelAdapt16[i] * far_spectrum[i];
// (*echo_energy_stored) += (uint32_t)echo_est[i];
// }
while (start_stored_p < end_stored_p) {
spectrum_v = vld1q_u16(far_spectrum_p);
adapt_v = vld1q_s16(start_adapt_p);
store_v = vld1q_s16(start_stored_p);
far_energy_v = vaddw_u16(far_energy_v, vget_low_u16(spectrum_v));
far_energy_v = vaddw_u16(far_energy_v, vget_high_u16(spectrum_v));
echo_est_v_low = vmull_u16(vreinterpret_u16_s16(vget_low_s16(store_v)),
vget_low_u16(spectrum_v));
echo_est_v_high = vmull_u16(vreinterpret_u16_s16(vget_high_s16(store_v)),
vget_high_u16(spectrum_v));
vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
echo_stored_v = vaddq_u32(echo_est_v_low, echo_stored_v);
echo_stored_v = vaddq_u32(echo_est_v_high, echo_stored_v);
echo_adapt_v =
vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_low_s16(adapt_v)),
vget_low_u16(spectrum_v));
echo_adapt_v =
vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_high_s16(adapt_v)),
vget_high_u16(spectrum_v));
start_stored_p += 8;
start_adapt_p += 8;
far_spectrum_p += 8;
echo_est_p += 8;
}
AddLanes(far_energy, far_energy_v);
AddLanes(echo_energy_stored, echo_stored_v);
AddLanes(echo_energy_adapt, echo_adapt_v);
echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
far_spectrum[PART_LEN]);
*echo_energy_stored += (uint32_t)echo_est[PART_LEN];
*far_energy += (uint32_t)far_spectrum[PART_LEN];
*echo_energy_adapt += aecm->channelAdapt16[PART_LEN] * far_spectrum[PART_LEN];
}
void WebRtcAecm_StoreAdaptiveChannelNeon(AecmCore* aecm,
const uint16_t* far_spectrum,
int32_t* echo_est) {
RTC_DCHECK_EQ(0, (uintptr_t)echo_est % 32);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelStored % 16);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelAdapt16 % 16);
// This is C code of following optimized code.
// During startup we store the channel every block.
// memcpy(aecm->channelStored,
// aecm->channelAdapt16,
// sizeof(int16_t) * PART_LEN1);
// Recalculate echo estimate
// for (i = 0; i < PART_LEN; i += 4) {
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
// far_spectrum[i]);
// echo_est[i + 1] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1],
// far_spectrum[i + 1]);
// echo_est[i + 2] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2],
// far_spectrum[i + 2]);
// echo_est[i + 3] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3],
// far_spectrum[i + 3]);
// }
// echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
// far_spectrum[i]);
const uint16_t* far_spectrum_p = far_spectrum;
int16_t* start_adapt_p = aecm->channelAdapt16;
int16_t* start_stored_p = aecm->channelStored;
const int16_t* end_stored_p = aecm->channelStored + PART_LEN;
int32_t* echo_est_p = echo_est;
uint16x8_t far_spectrum_v;
int16x8_t adapt_v;
uint32x4_t echo_est_v_low, echo_est_v_high;
while (start_stored_p < end_stored_p) {
far_spectrum_v = vld1q_u16(far_spectrum_p);
adapt_v = vld1q_s16(start_adapt_p);
vst1q_s16(start_stored_p, adapt_v);
echo_est_v_low = vmull_u16(vget_low_u16(far_spectrum_v),
vget_low_u16(vreinterpretq_u16_s16(adapt_v)));
echo_est_v_high = vmull_u16(vget_high_u16(far_spectrum_v),
vget_high_u16(vreinterpretq_u16_s16(adapt_v)));
vst1q_s32(echo_est_p, vreinterpretq_s32_u32(echo_est_v_low));
vst1q_s32(echo_est_p + 4, vreinterpretq_s32_u32(echo_est_v_high));
far_spectrum_p += 8;
start_adapt_p += 8;
start_stored_p += 8;
echo_est_p += 8;
}
aecm->channelStored[PART_LEN] = aecm->channelAdapt16[PART_LEN];
echo_est[PART_LEN] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[PART_LEN],
far_spectrum[PART_LEN]);
}
void WebRtcAecm_ResetAdaptiveChannelNeon(AecmCore* aecm) {
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelStored % 16);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelAdapt16 % 16);
RTC_DCHECK_EQ(0, (uintptr_t)aecm->channelAdapt32 % 32);
// The C code of following optimized code.
// for (i = 0; i < PART_LEN1; i++) {
// aecm->channelAdapt16[i] = aecm->channelStored[i];
// aecm->channelAdapt32[i] = WEBRTC_SPL_LSHIFT_W32(
// (int32_t)aecm->channelStored[i], 16);
// }
int16_t* start_stored_p = aecm->channelStored;
int16_t* start_adapt16_p = aecm->channelAdapt16;
int32_t* start_adapt32_p = aecm->channelAdapt32;
const int16_t* end_stored_p = start_stored_p + PART_LEN;
int16x8_t stored_v;
int32x4_t adapt32_v_low, adapt32_v_high;
while (start_stored_p < end_stored_p) {
stored_v = vld1q_s16(start_stored_p);
vst1q_s16(start_adapt16_p, stored_v);
adapt32_v_low = vshll_n_s16(vget_low_s16(stored_v), 16);
adapt32_v_high = vshll_n_s16(vget_high_s16(stored_v), 16);
vst1q_s32(start_adapt32_p, adapt32_v_low);
vst1q_s32(start_adapt32_p + 4, adapt32_v_high);
start_stored_p += 8;
start_adapt16_p += 8;
start_adapt32_p += 8;
}
aecm->channelAdapt16[PART_LEN] = aecm->channelStored[PART_LEN];
aecm->channelAdapt32[PART_LEN] = (int32_t)aecm->channelStored[PART_LEN] << 16;
}
} // namespace webrtc

View File

@ -0,0 +1,87 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#define MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
#define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
/* Algorithm parameters */
#define FRAME_LEN 80 /* Total frame length, 10 ms. */
#define PART_LEN 64 /* Length of partition. */
#define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
#define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
#define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
#define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
#define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
#define MAX_DELAY 100
/* Counter parameters */
#define CONV_LEN 512 /* Convergence length used at startup. */
#define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
/* Energy parameters */
#define MAX_BUF_LEN 64 /* History length of energy signals. */
#define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
/* in energy. */
#define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
/* and min. */
#define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
#define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
#define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
/* Stepsize parameters */
#define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
/* dependent). */
#define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
/* dependent). */
#define MU_DIFF 9 /* MU_MIN - MU_MAX */
/* Channel parameters */
#define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
/* far end energy to compare channel estimates. */
#define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
/* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
#define MSE_RESOLUTION 5 /* MSE parameter resolution. */
#define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
#define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
#define CHANNEL_VAD 16 /* Minimum energy in frequency band */
/* to update channel. */
/* Suppression gain parameters: SUPGAIN parameters in Q-(RESOLUTION_SUPGAIN). */
#define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
#define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
/* (Maximum gain) (8 in Q8). */
#define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
/* (Gain before going down). */
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
/* (Should be the same as Default) (1 in Q8). */
#define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
/* Defines for "check delay estimation" */
#define CORR_WIDTH 31 /* Number of samples to correlate over. */
#define CORR_MAX 16 /* Maximum correlation offset. */
#define CORR_MAX_BUF 63
#define CORR_DEV 4
#define CORR_MAX_LEVEL 20
#define CORR_MAX_LOW 4
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
/* Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN. */
#define ONE_Q14 (1 << 14)
/* NLP defines */
#define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
#define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
#endif

View File

@ -0,0 +1,599 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aecm/echo_control_mobile.h"
#ifdef AEC_DEBUG
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
extern "C" {
#include "common_audio/ring_buffer.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_processing/aecm/aecm_defines.h"
}
#include "modules/audio_processing/aecm/aecm_core.h"
namespace webrtc {
namespace {
#define BUF_SIZE_FRAMES 50 // buffer size (frames)
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const size_t kBufSizeSamp =
BUF_SIZE_FRAMES * FRAME_LEN; // buffer size (samples)
static const int kSampMsNb = 8; // samples per ms in nb
// Target suppression levels for nlp modes
// log{0.001, 0.00001, 0.00000001}
static const int kInitCheck = 42;
typedef struct {
int sampFreq;
int scSampFreq;
short bufSizeStart;
int knownDelay;
// Stores the last frame added to the farend buffer
short farendOld[2][FRAME_LEN];
short initFlag; // indicates if AEC has been initialized
// Variables used for averaging far end buffer size
short counter;
short sum;
short firstVal;
short checkBufSizeCtr;
// Variables used for delay shifts
short msInSndCardBuf;
short filtDelay;
int timeForDelayChange;
int ECstartup;
int checkBuffSize;
int delayChange;
short lastDelayDiff;
int16_t echoMode;
#ifdef AEC_DEBUG
FILE* bufFile;
FILE* delayFile;
FILE* preCompFile;
FILE* postCompFile;
#endif // AEC_DEBUG
// Structures
RingBuffer* farendBuf;
AecmCore* aecmCore;
} AecMobile;
} // namespace
// Estimates delay to set the position of the farend buffer read pointer
// (controlled by knownDelay)
static int WebRtcAecm_EstBufDelay(AecMobile* aecm, short msInSndCardBuf);
// Stuffs the farend buffer if the estimated delay is too large
static int WebRtcAecm_DelayComp(AecMobile* aecm);
void* WebRtcAecm_Create() {
// Allocate zero-filled memory.
AecMobile* aecm = static_cast<AecMobile*>(calloc(1, sizeof(AecMobile)));
aecm->aecmCore = WebRtcAecm_CreateCore();
if (!aecm->aecmCore) {
WebRtcAecm_Free(aecm);
return NULL;
}
aecm->farendBuf = WebRtc_CreateBuffer(kBufSizeSamp, sizeof(int16_t));
if (!aecm->farendBuf) {
WebRtcAecm_Free(aecm);
return NULL;
}
#ifdef AEC_DEBUG
aecm->aecmCore->farFile = fopen("aecFar.pcm", "wb");
aecm->aecmCore->nearFile = fopen("aecNear.pcm", "wb");
aecm->aecmCore->outFile = fopen("aecOut.pcm", "wb");
// aecm->aecmCore->outLpFile = fopen("aecOutLp.pcm","wb");
aecm->bufFile = fopen("aecBuf.dat", "wb");
aecm->delayFile = fopen("aecDelay.dat", "wb");
aecm->preCompFile = fopen("preComp.pcm", "wb");
aecm->postCompFile = fopen("postComp.pcm", "wb");
#endif // AEC_DEBUG
return aecm;
}
void WebRtcAecm_Free(void* aecmInst) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
if (aecm == NULL) {
return;
}
#ifdef AEC_DEBUG
fclose(aecm->aecmCore->farFile);
fclose(aecm->aecmCore->nearFile);
fclose(aecm->aecmCore->outFile);
// fclose(aecm->aecmCore->outLpFile);
fclose(aecm->bufFile);
fclose(aecm->delayFile);
fclose(aecm->preCompFile);
fclose(aecm->postCompFile);
#endif // AEC_DEBUG
WebRtcAecm_FreeCore(aecm->aecmCore);
WebRtc_FreeBuffer(aecm->farendBuf);
free(aecm);
}
int32_t WebRtcAecm_Init(void* aecmInst, int32_t sampFreq) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
AecmConfig aecConfig;
if (aecm == NULL) {
return -1;
}
if (sampFreq != 8000 && sampFreq != 16000) {
return AECM_BAD_PARAMETER_ERROR;
}
aecm->sampFreq = sampFreq;
// Initialize AECM core
if (WebRtcAecm_InitCore(aecm->aecmCore, aecm->sampFreq) == -1) {
return AECM_UNSPECIFIED_ERROR;
}
// Initialize farend buffer
WebRtc_InitBuffer(aecm->farendBuf);
aecm->initFlag = kInitCheck; // indicates that initialization has been done
aecm->delayChange = 1;
aecm->sum = 0;
aecm->counter = 0;
aecm->checkBuffSize = 1;
aecm->firstVal = 0;
aecm->ECstartup = 1;
aecm->bufSizeStart = 0;
aecm->checkBufSizeCtr = 0;
aecm->filtDelay = 0;
aecm->timeForDelayChange = 0;
aecm->knownDelay = 0;
aecm->lastDelayDiff = 0;
memset(&aecm->farendOld, 0, sizeof(aecm->farendOld));
// Default settings.
aecConfig.cngMode = AecmTrue;
aecConfig.echoMode = 3;
if (WebRtcAecm_set_config(aecm, aecConfig) == -1) {
return AECM_UNSPECIFIED_ERROR;
}
return 0;
}
// Returns any error that is caused when buffering the
// farend signal.
int32_t WebRtcAecm_GetBufferFarendError(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
if (aecm == NULL)
return -1;
if (farend == NULL)
return AECM_NULL_POINTER_ERROR;
if (aecm->initFlag != kInitCheck)
return AECM_UNINITIALIZED_ERROR;
if (nrOfSamples != 80 && nrOfSamples != 160)
return AECM_BAD_PARAMETER_ERROR;
return 0;
}
int32_t WebRtcAecm_BufferFarend(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
const int32_t err =
WebRtcAecm_GetBufferFarendError(aecmInst, farend, nrOfSamples);
if (err != 0)
return err;
// TODO(unknown): Is this really a good idea?
if (!aecm->ECstartup) {
WebRtcAecm_DelayComp(aecm);
}
WebRtc_WriteBuffer(aecm->farendBuf, farend, nrOfSamples);
return 0;
}
int32_t WebRtcAecm_Process(void* aecmInst,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* out,
size_t nrOfSamples,
int16_t msInSndCardBuf) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
int32_t retVal = 0;
size_t i;
short nmbrOfFilledBuffers;
size_t nBlocks10ms;
size_t nFrames;
#ifdef AEC_DEBUG
short msInAECBuf;
#endif
if (aecm == NULL) {
return -1;
}
if (nearendNoisy == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (out == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
if (nrOfSamples != 80 && nrOfSamples != 160) {
return AECM_BAD_PARAMETER_ERROR;
}
if (msInSndCardBuf < 0) {
msInSndCardBuf = 0;
retVal = AECM_BAD_PARAMETER_WARNING;
} else if (msInSndCardBuf > 500) {
msInSndCardBuf = 500;
retVal = AECM_BAD_PARAMETER_WARNING;
}
msInSndCardBuf += 10;
aecm->msInSndCardBuf = msInSndCardBuf;
nFrames = nrOfSamples / FRAME_LEN;
nBlocks10ms = nFrames / aecm->aecmCore->mult;
if (aecm->ECstartup) {
if (nearendClean == NULL) {
if (out != nearendNoisy) {
memcpy(out, nearendNoisy, sizeof(short) * nrOfSamples);
}
} else if (out != nearendClean) {
memcpy(out, nearendClean, sizeof(short) * nrOfSamples);
}
nmbrOfFilledBuffers =
(short)WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// The AECM is in the start up mode
// AECM is disabled until the soundcard buffer and farend buffers are OK
// Mechanism to ensure that the soundcard buffer is reasonably stable.
if (aecm->checkBuffSize) {
aecm->checkBufSizeCtr++;
// Before we fill up the far end buffer we require the amount of data on
// the sound card to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 4 consecutive frames. If it
// seems to be stable then we start to fill up the far end buffer.
if (aecm->counter == 0) {
aecm->firstVal = aecm->msInSndCardBuf;
aecm->sum = 0;
}
if (abs(aecm->firstVal - aecm->msInSndCardBuf) <
WEBRTC_SPL_MAX(0.2 * aecm->msInSndCardBuf, kSampMsNb)) {
aecm->sum += aecm->msInSndCardBuf;
aecm->counter++;
} else {
aecm->counter = 0;
}
if (aecm->counter * nBlocks10ms >= 6) {
// The farend buffer size is determined in blocks of 80 samples
// Use 75% of the average value of the soundcard buffer
aecm->bufSizeStart = WEBRTC_SPL_MIN(
(3 * aecm->sum * aecm->aecmCore->mult) / (aecm->counter * 40),
BUF_SIZE_FRAMES);
// buffersize has now been determined
aecm->checkBuffSize = 0;
}
if (aecm->checkBufSizeCtr * nBlocks10ms > 50) {
// for really bad sound cards, don't disable echocanceller for more than
// 0.5 sec
aecm->bufSizeStart = WEBRTC_SPL_MIN(
(3 * aecm->msInSndCardBuf * aecm->aecmCore->mult) / 40,
BUF_SIZE_FRAMES);
aecm->checkBuffSize = 0;
}
}
// if checkBuffSize changed in the if-statement above
if (!aecm->checkBuffSize) {
// soundcard buffer is now reasonably stable
// When the far end buffer is filled with approximately the same amount of
// data as the amount on the sound card we end the start up phase and
// start to cancel echoes.
if (nmbrOfFilledBuffers == aecm->bufSizeStart) {
aecm->ECstartup = 0; // Enable the AECM
} else if (nmbrOfFilledBuffers > aecm->bufSizeStart) {
WebRtc_MoveReadPtr(aecm->farendBuf,
(int)WebRtc_available_read(aecm->farendBuf) -
(int)aecm->bufSizeStart * FRAME_LEN);
aecm->ECstartup = 0;
}
}
} else {
// AECM is enabled
// Note only 1 block supported for nb and 2 blocks for wb
for (i = 0; i < nFrames; i++) {
int16_t farend[FRAME_LEN];
const int16_t* farend_ptr = NULL;
nmbrOfFilledBuffers =
(short)WebRtc_available_read(aecm->farendBuf) / FRAME_LEN;
// Check that there is data in the far end buffer
if (nmbrOfFilledBuffers > 0) {
// Get the next 80 samples from the farend buffer
WebRtc_ReadBuffer(aecm->farendBuf, (void**)&farend_ptr, farend,
FRAME_LEN);
// Always store the last frame for use when we run out of data
memcpy(&(aecm->farendOld[i][0]), farend_ptr, FRAME_LEN * sizeof(short));
} else {
// We have no data so we use the last played frame
memcpy(farend, &(aecm->farendOld[i][0]), FRAME_LEN * sizeof(short));
farend_ptr = farend;
}
// Call buffer delay estimator when all data is extracted,
// i,e. i = 0 for NB and i = 1 for WB
if ((i == 0 && aecm->sampFreq == 8000) ||
(i == 1 && aecm->sampFreq == 16000)) {
WebRtcAecm_EstBufDelay(aecm, aecm->msInSndCardBuf);
}
// Call the AECM
/*WebRtcAecm_ProcessFrame(aecm->aecmCore, farend, &nearend[FRAME_LEN * i],
&out[FRAME_LEN * i], aecm->knownDelay);*/
if (WebRtcAecm_ProcessFrame(
aecm->aecmCore, farend_ptr, &nearendNoisy[FRAME_LEN * i],
(nearendClean ? &nearendClean[FRAME_LEN * i] : NULL),
&out[FRAME_LEN * i]) == -1)
return -1;
}
}
#ifdef AEC_DEBUG
msInAECBuf = (short)WebRtc_available_read(aecm->farendBuf) /
(kSampMsNb * aecm->aecmCore->mult);
fwrite(&msInAECBuf, 2, 1, aecm->bufFile);
fwrite(&(aecm->knownDelay), sizeof(aecm->knownDelay), 1, aecm->delayFile);
#endif
return retVal;
}
int32_t WebRtcAecm_set_config(void* aecmInst, AecmConfig config) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
if (aecm == NULL) {
return -1;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
if (config.cngMode != AecmFalse && config.cngMode != AecmTrue) {
return AECM_BAD_PARAMETER_ERROR;
}
aecm->aecmCore->cngMode = config.cngMode;
if (config.echoMode < 0 || config.echoMode > 4) {
return AECM_BAD_PARAMETER_ERROR;
}
aecm->echoMode = config.echoMode;
if (aecm->echoMode == 0) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 3;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 3;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 3;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 3;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A >> 3) - (SUPGAIN_ERROR_PARAM_B >> 3);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B >> 3) - (SUPGAIN_ERROR_PARAM_D >> 3);
} else if (aecm->echoMode == 1) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 2;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 2;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 2;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 2;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A >> 2) - (SUPGAIN_ERROR_PARAM_B >> 2);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B >> 2) - (SUPGAIN_ERROR_PARAM_D >> 2);
} else if (aecm->echoMode == 2) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT >> 1;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT >> 1;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A >> 1;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D >> 1;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A >> 1) - (SUPGAIN_ERROR_PARAM_B >> 1);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B >> 1) - (SUPGAIN_ERROR_PARAM_D >> 1);
} else if (aecm->echoMode == 3) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
aecm->aecmCore->supGainErrParamDiffAB =
SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
aecm->aecmCore->supGainErrParamDiffBD =
SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
} else if (aecm->echoMode == 4) {
aecm->aecmCore->supGain = SUPGAIN_DEFAULT << 1;
aecm->aecmCore->supGainOld = SUPGAIN_DEFAULT << 1;
aecm->aecmCore->supGainErrParamA = SUPGAIN_ERROR_PARAM_A << 1;
aecm->aecmCore->supGainErrParamD = SUPGAIN_ERROR_PARAM_D << 1;
aecm->aecmCore->supGainErrParamDiffAB =
(SUPGAIN_ERROR_PARAM_A << 1) - (SUPGAIN_ERROR_PARAM_B << 1);
aecm->aecmCore->supGainErrParamDiffBD =
(SUPGAIN_ERROR_PARAM_B << 1) - (SUPGAIN_ERROR_PARAM_D << 1);
}
return 0;
}
int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
const int16_t* echo_path_ptr = static_cast<const int16_t*>(echo_path);
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes()) {
// Input channel size does not match the size of AECM
return AECM_BAD_PARAMETER_ERROR;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
WebRtcAecm_InitEchoPathCore(aecm->aecmCore, echo_path_ptr);
return 0;
}
int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes) {
AecMobile* aecm = static_cast<AecMobile*>(aecmInst);
int16_t* echo_path_ptr = static_cast<int16_t*>(echo_path);
if (aecmInst == NULL) {
return -1;
}
if (echo_path == NULL) {
return AECM_NULL_POINTER_ERROR;
}
if (size_bytes != WebRtcAecm_echo_path_size_bytes()) {
// Input channel size does not match the size of AECM
return AECM_BAD_PARAMETER_ERROR;
}
if (aecm->initFlag != kInitCheck) {
return AECM_UNINITIALIZED_ERROR;
}
memcpy(echo_path_ptr, aecm->aecmCore->channelStored, size_bytes);
return 0;
}
size_t WebRtcAecm_echo_path_size_bytes() {
return (PART_LEN1 * sizeof(int16_t));
}
static int WebRtcAecm_EstBufDelay(AecMobile* aecm, short msInSndCardBuf) {
short delayNew, nSampSndCard;
short nSampFar = (short)WebRtc_available_read(aecm->farendBuf);
short diff;
nSampSndCard = msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
if (delayNew < FRAME_LEN) {
WebRtc_MoveReadPtr(aecm->farendBuf, FRAME_LEN);
delayNew += FRAME_LEN;
}
aecm->filtDelay =
WEBRTC_SPL_MAX(0, (8 * aecm->filtDelay + 2 * delayNew) / 10);
diff = aecm->filtDelay - aecm->knownDelay;
if (diff > 224) {
if (aecm->lastDelayDiff < 96) {
aecm->timeForDelayChange = 0;
} else {
aecm->timeForDelayChange++;
}
} else if (diff < 96 && aecm->knownDelay > 0) {
if (aecm->lastDelayDiff > 224) {
aecm->timeForDelayChange = 0;
} else {
aecm->timeForDelayChange++;
}
} else {
aecm->timeForDelayChange = 0;
}
aecm->lastDelayDiff = diff;
if (aecm->timeForDelayChange > 25) {
aecm->knownDelay = WEBRTC_SPL_MAX((int)aecm->filtDelay - 160, 0);
}
return 0;
}
static int WebRtcAecm_DelayComp(AecMobile* aecm) {
int nSampFar = (int)WebRtc_available_read(aecm->farendBuf);
int nSampSndCard, delayNew, nSampAdd;
const int maxStuffSamp = 10 * FRAME_LEN;
nSampSndCard = aecm->msInSndCardBuf * kSampMsNb * aecm->aecmCore->mult;
delayNew = nSampSndCard - nSampFar;
if (delayNew > FAR_BUF_LEN - FRAME_LEN * aecm->aecmCore->mult) {
// The difference of the buffer sizes is larger than the maximum
// allowed known delay. Compensate by stuffing the buffer.
nSampAdd =
(int)(WEBRTC_SPL_MAX(((nSampSndCard >> 1) - nSampFar), FRAME_LEN));
nSampAdd = WEBRTC_SPL_MIN(nSampAdd, maxStuffSamp);
WebRtc_MoveReadPtr(aecm->farendBuf, -nSampAdd);
aecm->delayChange = 1; // the delay needs to be updated
}
return 0;
}
} // namespace webrtc

View File

@ -0,0 +1,209 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_
#define MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_
#include <stddef.h>
#include <stdint.h>
namespace webrtc {
enum { AecmFalse = 0, AecmTrue };
// Errors
#define AECM_UNSPECIFIED_ERROR 12000
#define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
#define AECM_UNINITIALIZED_ERROR 12002
#define AECM_NULL_POINTER_ERROR 12003
#define AECM_BAD_PARAMETER_ERROR 12004
// Warnings
#define AECM_BAD_PARAMETER_WARNING 12100
typedef struct {
int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
int16_t echoMode; // 0, 1, 2, 3 (default), 4
} AecmConfig;
#ifdef __cplusplus
extern "C" {
#endif
/*
* Allocates the memory needed by the AECM. The memory needs to be
* initialized separately using the WebRtcAecm_Init() function.
* Returns a pointer to the instance and a nullptr at failure.
*/
void* WebRtcAecm_Create();
/*
* This function releases the memory allocated by WebRtcAecm_Create()
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
*/
void WebRtcAecm_Free(void* aecmInst);
/*
* Initializes an AECM instance.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* int32_t sampFreq Sampling frequency of data
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_Init(void* aecmInst, int32_t sampFreq);
/*
* Inserts an 80 or 160 sample block of data into the farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* int16_t* farend In buffer containing one frame of
* farend signal
* int16_t nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_BufferFarend(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples);
/*
* Reports any errors that would arise when buffering a farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* int16_t* farend In buffer containing one frame of
* farend signal
* int16_t nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_GetBufferFarendError(void* aecmInst,
const int16_t* farend,
size_t nrOfSamples);
/*
* Runs the AECM on an 80 or 160 sample blocks of data.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* int16_t* nearendNoisy In buffer containing one frame of
* reference nearend+echo signal. If
* noise reduction is active, provide
* the noisy signal here.
* int16_t* nearendClean In buffer containing one frame of
* nearend+echo signal. If noise
* reduction is active, provide the
* clean signal here. Otherwise pass a
* NULL pointer.
* int16_t nrOfSamples Number of samples in nearend buffer
* int16_t msInSndCardBuf Delay estimate for sound card and
* system buffers
*
* Outputs Description
* -------------------------------------------------------------------
* int16_t* out Out buffer, one frame of processed nearend
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_Process(void* aecmInst,
const int16_t* nearendNoisy,
const int16_t* nearendClean,
int16_t* out,
size_t nrOfSamples,
int16_t msInSndCardBuf);
/*
* This function enables the user to set certain parameters on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* AecmConfig config Config instance that contains all
* properties to be set
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_set_config(void* aecmInst, AecmConfig config);
/*
* This function enables the user to set the echo path on-the-fly.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* void* echo_path Pointer to the echo path to be set
* size_t size_bytes Size in bytes of the echo path
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_InitEchoPath(void* aecmInst,
const void* echo_path,
size_t size_bytes);
/*
* This function enables the user to get the currently used echo path
* on-the-fly
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecmInst Pointer to the AECM instance
* void* echo_path Pointer to echo path
* size_t size_bytes Size in bytes of the echo path
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 1200-12004,12100: error/warning
*/
int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
void* echo_path,
size_t size_bytes);
/*
* This function enables the user to get the echo path size in bytes
*
* Outputs Description
* -------------------------------------------------------------------
* size_t return Size in bytes
*/
size_t WebRtcAecm_echo_path_size_bytes();
#ifdef __cplusplus
}
#endif
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AECM_ECHO_CONTROL_MOBILE_H_

View File

@ -0,0 +1,708 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/utility/delay_estimator.h"
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Number of right shifts for scaling is linearly depending on number of bits in
// the far-end binary spectrum.
static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum.
static const int kShiftsLinearSlope = 3;
static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
// Robust validation settings
static const float kHistogramMax = 3000.f;
static const float kLastHistogramMax = 250.f;
static const float kMinHistogramThreshold = 1.5f;
static const int kMinRequiredHits = 10;
static const int kMaxHitsWhenPossiblyNonCausal = 10;
static const int kMaxHitsWhenPossiblyCausal = 1000;
static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0.
static const float kFractionSlope = 0.05f;
static const float kMinFractionWhenPossiblyCausal = 0.5f;
static const float kMinFractionWhenPossiblyNonCausal = 0.25f;
} // namespace
// Counts and returns number of bits of a 32-bit word.
static int BitCount(uint32_t u32) {
uint32_t tmp =
u32 - ((u32 >> 1) & 033333333333) - ((u32 >> 2) & 011111111111);
tmp = ((tmp + (tmp >> 3)) & 030707070707);
tmp = (tmp + (tmp >> 6));
tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
return ((int)tmp);
}
// Compares the `binary_vector` with all rows of the `binary_matrix` and counts
// per row the number of times they have the same value.
//
// Inputs:
// - binary_vector : binary "vector" stored in a long
// - binary_matrix : binary "matrix" stored as a vector of long
// - matrix_size : size of binary "matrix"
//
// Output:
// - bit_counts : "Vector" stored as a long, containing for each
// row the number of times the matrix row and the
// input vector have the same value
//
static void BitCountComparison(uint32_t binary_vector,
const uint32_t* binary_matrix,
int matrix_size,
int32_t* bit_counts) {
int n = 0;
// Compare `binary_vector` with all rows of the `binary_matrix`
for (; n < matrix_size; n++) {
bit_counts[n] = (int32_t)BitCount(binary_vector ^ binary_matrix[n]);
}
}
// Collects necessary statistics for the HistogramBasedValidation(). This
// function has to be called prior to calling HistogramBasedValidation(). The
// statistics updated and used by the HistogramBasedValidation() are:
// 1. the number of `candidate_hits`, which states for how long we have had the
// same `candidate_delay`
// 2. the `histogram` of candidate delays over time. This histogram is
// weighted with respect to a reliability measure and time-varying to cope
// with possible delay shifts.
// For further description see commented code.
//
// Inputs:
// - candidate_delay : The delay to validate.
// - valley_depth_q14 : The cost function has a valley/minimum at the
// `candidate_delay` location. `valley_depth_q14` is the
// cost function difference between the minimum and
// maximum locations. The value is in the Q14 domain.
// - valley_level_q14 : Is the cost function value at the minimum, in Q14.
static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self,
int candidate_delay,
int32_t valley_depth_q14,
int32_t valley_level_q14) {
const float valley_depth = valley_depth_q14 * kQ14Scaling;
float decrease_in_last_set = valley_depth;
const int max_hits_for_slow_change = (candidate_delay < self->last_delay)
? kMaxHitsWhenPossiblyNonCausal
: kMaxHitsWhenPossiblyCausal;
int i = 0;
RTC_DCHECK_EQ(self->history_size, self->farend->history_size);
// Reset `candidate_hits` if we have a new candidate.
if (candidate_delay != self->last_candidate_delay) {
self->candidate_hits = 0;
self->last_candidate_delay = candidate_delay;
}
self->candidate_hits++;
// The `histogram` is updated differently across the bins.
// 1. The `candidate_delay` histogram bin is increased with the
// `valley_depth`, which is a simple measure of how reliable the
// `candidate_delay` is. The histogram is not increased above
// `kHistogramMax`.
self->histogram[candidate_delay] += valley_depth;
if (self->histogram[candidate_delay] > kHistogramMax) {
self->histogram[candidate_delay] = kHistogramMax;
}
// 2. The histogram bins in the neighborhood of `candidate_delay` are
// unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}.
// 3. The histogram bins in the neighborhood of `last_delay` are decreased
// with `decrease_in_last_set`. This value equals the difference between
// the cost function values at the locations `candidate_delay` and
// `last_delay` until we reach `max_hits_for_slow_change` consecutive hits
// at the `candidate_delay`. If we exceed this amount of hits the
// `candidate_delay` is a "potential" candidate and we start decreasing
// these histogram bins more rapidly with `valley_depth`.
if (self->candidate_hits < max_hits_for_slow_change) {
decrease_in_last_set =
(self->mean_bit_counts[self->compare_delay] - valley_level_q14) *
kQ14Scaling;
}
// 4. All other bins are decreased with `valley_depth`.
// TODO(bjornv): Investigate how to make this loop more efficient. Split up
// the loop? Remove parts that doesn't add too much.
for (i = 0; i < self->history_size; ++i) {
int is_in_last_set = (i >= self->last_delay - 2) &&
(i <= self->last_delay + 1) && (i != candidate_delay);
int is_in_candidate_set =
(i >= candidate_delay - 2) && (i <= candidate_delay + 1);
self->histogram[i] -=
decrease_in_last_set * is_in_last_set +
valley_depth * (!is_in_last_set && !is_in_candidate_set);
// 5. No histogram bin can go below 0.
if (self->histogram[i] < 0) {
self->histogram[i] = 0;
}
}
}
// Validates the `candidate_delay`, estimated in WebRtc_ProcessBinarySpectrum(),
// based on a mix of counting concurring hits with a modified histogram
// of recent delay estimates. In brief a candidate is valid (returns 1) if it
// is the most likely according to the histogram. There are a couple of
// exceptions that are worth mentioning:
// 1. If the `candidate_delay` < `last_delay` it can be that we are in a
// non-causal state, breaking a possible echo control algorithm. Hence, we
// open up for a quicker change by allowing the change even if the
// `candidate_delay` is not the most likely one according to the histogram.
// 2. There's a minimum number of hits (kMinRequiredHits) and the histogram
// value has to reached a minimum (kMinHistogramThreshold) to be valid.
// 3. The action is also depending on the filter length used for echo control.
// If the delay difference is larger than what the filter can capture, we
// also move quicker towards a change.
// For further description see commented code.
//
// Input:
// - candidate_delay : The delay to validate.
//
// Return value:
// - is_histogram_valid : 1 - The `candidate_delay` is valid.
// 0 - Otherwise.
static int HistogramBasedValidation(const BinaryDelayEstimator* self,
int candidate_delay) {
float fraction = 1.f;
float histogram_threshold = self->histogram[self->compare_delay];
const int delay_difference = candidate_delay - self->last_delay;
int is_histogram_valid = 0;
// The histogram based validation of `candidate_delay` is done by comparing
// the `histogram` at bin `candidate_delay` with a `histogram_threshold`.
// This `histogram_threshold` equals a `fraction` of the `histogram` at bin
// `last_delay`. The `fraction` is a piecewise linear function of the
// `delay_difference` between the `candidate_delay` and the `last_delay`
// allowing for a quicker move if
// i) a potential echo control filter can not handle these large differences.
// ii) keeping `last_delay` instead of updating to `candidate_delay` could
// force an echo control into a non-causal state.
// We further require the histogram to have reached a minimum value of
// `kMinHistogramThreshold`. In addition, we also require the number of
// `candidate_hits` to be more than `kMinRequiredHits` to remove spurious
// values.
// Calculate a comparison histogram value (`histogram_threshold`) that is
// depending on the distance between the `candidate_delay` and `last_delay`.
// TODO(bjornv): How much can we gain by turning the fraction calculation
// into tables?
if (delay_difference > self->allowed_offset) {
fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset);
fraction = (fraction > kMinFractionWhenPossiblyCausal
? fraction
: kMinFractionWhenPossiblyCausal);
} else if (delay_difference < 0) {
fraction =
kMinFractionWhenPossiblyNonCausal - kFractionSlope * delay_difference;
fraction = (fraction > 1.f ? 1.f : fraction);
}
histogram_threshold *= fraction;
histogram_threshold =
(histogram_threshold > kMinHistogramThreshold ? histogram_threshold
: kMinHistogramThreshold);
is_histogram_valid =
(self->histogram[candidate_delay] >= histogram_threshold) &&
(self->candidate_hits > kMinRequiredHits);
return is_histogram_valid;
}
// Performs a robust validation of the `candidate_delay` estimated in
// WebRtc_ProcessBinarySpectrum(). The algorithm takes the
// `is_instantaneous_valid` and the `is_histogram_valid` and combines them
// into a robust validation. The HistogramBasedValidation() has to be called
// prior to this call.
// For further description on how the combination is done, see commented code.
//
// Inputs:
// - candidate_delay : The delay to validate.
// - is_instantaneous_valid : The instantaneous validation performed in
// WebRtc_ProcessBinarySpectrum().
// - is_histogram_valid : The histogram based validation.
//
// Return value:
// - is_robust : 1 - The candidate_delay is valid according to a
// combination of the two inputs.
// : 0 - Otherwise.
static int RobustValidation(const BinaryDelayEstimator* self,
int candidate_delay,
int is_instantaneous_valid,
int is_histogram_valid) {
int is_robust = 0;
// The final robust validation is based on the two algorithms; 1) the
// `is_instantaneous_valid` and 2) the histogram based with result stored in
// `is_histogram_valid`.
// i) Before we actually have a valid estimate (`last_delay` == -2), we say
// a candidate is valid if either algorithm states so
// (`is_instantaneous_valid` OR `is_histogram_valid`).
is_robust =
(self->last_delay < 0) && (is_instantaneous_valid || is_histogram_valid);
// ii) Otherwise, we need both algorithms to be certain
// (`is_instantaneous_valid` AND `is_histogram_valid`)
is_robust |= is_instantaneous_valid && is_histogram_valid;
// iii) With one exception, i.e., the histogram based algorithm can overrule
// the instantaneous one if `is_histogram_valid` = 1 and the histogram
// is significantly strong.
is_robust |= is_histogram_valid &&
(self->histogram[candidate_delay] > self->last_delay_histogram);
return is_robust;
}
void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
if (self == NULL) {
return;
}
free(self->binary_far_history);
self->binary_far_history = NULL;
free(self->far_bit_counts);
self->far_bit_counts = NULL;
free(self);
}
BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
int history_size) {
BinaryDelayEstimatorFarend* self = NULL;
if (history_size > 1) {
// Sanity conditions fulfilled.
self = static_cast<BinaryDelayEstimatorFarend*>(
malloc(sizeof(BinaryDelayEstimatorFarend)));
}
if (self == NULL) {
return NULL;
}
self->history_size = 0;
self->binary_far_history = NULL;
self->far_bit_counts = NULL;
if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) {
WebRtc_FreeBinaryDelayEstimatorFarend(self);
self = NULL;
}
return self;
}
int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self,
int history_size) {
RTC_DCHECK(self);
// (Re-)Allocate memory for history buffers.
self->binary_far_history = static_cast<uint32_t*>(
realloc(self->binary_far_history,
history_size * sizeof(*self->binary_far_history)));
self->far_bit_counts = static_cast<int*>(realloc(
self->far_bit_counts, history_size * sizeof(*self->far_bit_counts)));
if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) {
history_size = 0;
}
// Fill with zeros if we have expanded the buffers.
if (history_size > self->history_size) {
int size_diff = history_size - self->history_size;
memset(&self->binary_far_history[self->history_size], 0,
sizeof(*self->binary_far_history) * size_diff);
memset(&self->far_bit_counts[self->history_size], 0,
sizeof(*self->far_bit_counts) * size_diff);
}
self->history_size = history_size;
return self->history_size;
}
void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) {
RTC_DCHECK(self);
memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size);
memset(self->far_bit_counts, 0, sizeof(int) * self->history_size);
}
void WebRtc_SoftResetBinaryDelayEstimatorFarend(
BinaryDelayEstimatorFarend* self,
int delay_shift) {
int abs_shift = abs(delay_shift);
int shift_size = 0;
int dest_index = 0;
int src_index = 0;
int padding_index = 0;
RTC_DCHECK(self);
shift_size = self->history_size - abs_shift;
RTC_DCHECK_GT(shift_size, 0);
if (delay_shift == 0) {
return;
} else if (delay_shift > 0) {
dest_index = abs_shift;
} else if (delay_shift < 0) {
src_index = abs_shift;
padding_index = shift_size;
}
// Shift and zero pad buffers.
memmove(&self->binary_far_history[dest_index],
&self->binary_far_history[src_index],
sizeof(*self->binary_far_history) * shift_size);
memset(&self->binary_far_history[padding_index], 0,
sizeof(*self->binary_far_history) * abs_shift);
memmove(&self->far_bit_counts[dest_index], &self->far_bit_counts[src_index],
sizeof(*self->far_bit_counts) * shift_size);
memset(&self->far_bit_counts[padding_index], 0,
sizeof(*self->far_bit_counts) * abs_shift);
}
void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle,
uint32_t binary_far_spectrum) {
RTC_DCHECK(handle);
// Shift binary spectrum history and insert current `binary_far_spectrum`.
memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
(handle->history_size - 1) * sizeof(uint32_t));
handle->binary_far_history[0] = binary_far_spectrum;
// Shift history of far-end binary spectrum bit counts and insert bit count
// of current `binary_far_spectrum`.
memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
(handle->history_size - 1) * sizeof(int));
handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
}
void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) {
if (self == NULL) {
return;
}
free(self->mean_bit_counts);
self->mean_bit_counts = NULL;
free(self->bit_counts);
self->bit_counts = NULL;
free(self->binary_near_history);
self->binary_near_history = NULL;
free(self->histogram);
self->histogram = NULL;
// BinaryDelayEstimator does not have ownership of `farend`, hence we do not
// free the memory here. That should be handled separately by the user.
self->farend = NULL;
free(self);
}
BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
BinaryDelayEstimatorFarend* farend,
int max_lookahead) {
BinaryDelayEstimator* self = NULL;
if ((farend != NULL) && (max_lookahead >= 0)) {
// Sanity conditions fulfilled.
self = static_cast<BinaryDelayEstimator*>(
malloc(sizeof(BinaryDelayEstimator)));
}
if (self == NULL) {
return NULL;
}
self->farend = farend;
self->near_history_size = max_lookahead + 1;
self->history_size = 0;
self->robust_validation_enabled = 0; // Disabled by default.
self->allowed_offset = 0;
self->lookahead = max_lookahead;
// Allocate memory for spectrum and history buffers.
self->mean_bit_counts = NULL;
self->bit_counts = NULL;
self->histogram = NULL;
self->binary_near_history = static_cast<uint32_t*>(
malloc((max_lookahead + 1) * sizeof(*self->binary_near_history)));
if (self->binary_near_history == NULL ||
WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) {
WebRtc_FreeBinaryDelayEstimator(self);
self = NULL;
}
return self;
}
int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self,
int history_size) {
BinaryDelayEstimatorFarend* far = self->farend;
// (Re-)Allocate memory for spectrum and history buffers.
if (history_size != far->history_size) {
// Only update far-end buffers if we need.
history_size = WebRtc_AllocateFarendBufferMemory(far, history_size);
}
// The extra array element in `mean_bit_counts` and `histogram` is a dummy
// element only used while `last_delay` == -2, i.e., before we have a valid
// estimate.
self->mean_bit_counts = static_cast<int32_t*>(
realloc(self->mean_bit_counts,
(history_size + 1) * sizeof(*self->mean_bit_counts)));
self->bit_counts = static_cast<int32_t*>(
realloc(self->bit_counts, history_size * sizeof(*self->bit_counts)));
self->histogram = static_cast<float*>(
realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram)));
if ((self->mean_bit_counts == NULL) || (self->bit_counts == NULL) ||
(self->histogram == NULL)) {
history_size = 0;
}
// Fill with zeros if we have expanded the buffers.
if (history_size > self->history_size) {
int size_diff = history_size - self->history_size;
memset(&self->mean_bit_counts[self->history_size], 0,
sizeof(*self->mean_bit_counts) * size_diff);
memset(&self->bit_counts[self->history_size], 0,
sizeof(*self->bit_counts) * size_diff);
memset(&self->histogram[self->history_size], 0,
sizeof(*self->histogram) * size_diff);
}
self->history_size = history_size;
return self->history_size;
}
void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) {
int i = 0;
RTC_DCHECK(self);
memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size);
memset(self->binary_near_history, 0,
sizeof(uint32_t) * self->near_history_size);
for (i = 0; i <= self->history_size; ++i) {
self->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
self->histogram[i] = 0.f;
}
self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9.
self->last_delay_probability = (int)kMaxBitCountsQ9; // 32 in Q9.
// Default return value if we're unable to estimate. -1 is used for errors.
self->last_delay = -2;
self->last_candidate_delay = -2;
self->compare_delay = self->history_size;
self->candidate_hits = 0;
self->last_delay_histogram = 0.f;
}
int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
int delay_shift) {
int lookahead = 0;
RTC_DCHECK(self);
lookahead = self->lookahead;
self->lookahead -= delay_shift;
if (self->lookahead < 0) {
self->lookahead = 0;
}
if (self->lookahead > self->near_history_size - 1) {
self->lookahead = self->near_history_size - 1;
}
return lookahead - self->lookahead;
}
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
uint32_t binary_near_spectrum) {
int i = 0;
int candidate_delay = -1;
int valid_candidate = 0;
int32_t value_best_candidate = kMaxBitCountsQ9;
int32_t value_worst_candidate = 0;
int32_t valley_depth = 0;
RTC_DCHECK(self);
if (self->farend->history_size != self->history_size) {
// Non matching history sizes.
return -1;
}
if (self->near_history_size > 1) {
// If we apply lookahead, shift near-end binary spectrum history. Insert
// current `binary_near_spectrum` and pull out the delayed one.
memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]),
(self->near_history_size - 1) * sizeof(uint32_t));
self->binary_near_history[0] = binary_near_spectrum;
binary_near_spectrum = self->binary_near_history[self->lookahead];
}
// Compare with delayed spectra and store the `bit_counts` for each delay.
BitCountComparison(binary_near_spectrum, self->farend->binary_far_history,
self->history_size, self->bit_counts);
// Update `mean_bit_counts`, which is the smoothed version of `bit_counts`.
for (i = 0; i < self->history_size; i++) {
// `bit_counts` is constrained to [0, 32], meaning we can smooth with a
// factor up to 2^26. We use Q9.
int32_t bit_count = (self->bit_counts[i] << 9); // Q9.
// Update `mean_bit_counts` only when far-end signal has something to
// contribute. If `far_bit_counts` is zero the far-end signal is weak and
// we likely have a poor echo condition, hence don't update.
if (self->farend->far_bit_counts[i] > 0) {
// Make number of right shifts piecewise linear w.r.t. `far_bit_counts`.
int shifts = kShiftsAtZero;
shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4;
WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i]));
}
}
// Find `candidate_delay`, `value_best_candidate` and `value_worst_candidate`
// of `mean_bit_counts`.
for (i = 0; i < self->history_size; i++) {
if (self->mean_bit_counts[i] < value_best_candidate) {
value_best_candidate = self->mean_bit_counts[i];
candidate_delay = i;
}
if (self->mean_bit_counts[i] > value_worst_candidate) {
value_worst_candidate = self->mean_bit_counts[i];
}
}
valley_depth = value_worst_candidate - value_best_candidate;
// The `value_best_candidate` is a good indicator on the probability of
// `candidate_delay` being an accurate delay (a small `value_best_candidate`
// means a good binary match). In the following sections we make a decision
// whether to update `last_delay` or not.
// 1) If the difference bit counts between the best and the worst delay
// candidates is too small we consider the situation to be unreliable and
// don't update `last_delay`.
// 2) If the situation is reliable we update `last_delay` if the value of the
// best candidate delay has a value less than
// i) an adaptive threshold `minimum_probability`, or
// ii) this corresponding value `last_delay_probability`, but updated at
// this time instant.
// Update `minimum_probability`.
if ((self->minimum_probability > kProbabilityLowerLimit) &&
(valley_depth > kProbabilityMinSpread)) {
// The "hard" threshold can't be lower than 17 (in Q9).
// The valley in the curve also has to be distinct, i.e., the
// difference between `value_worst_candidate` and `value_best_candidate` has
// to be large enough.
int32_t threshold = value_best_candidate + kProbabilityOffset;
if (threshold < kProbabilityLowerLimit) {
threshold = kProbabilityLowerLimit;
}
if (self->minimum_probability > threshold) {
self->minimum_probability = threshold;
}
}
// Update `last_delay_probability`.
// We use a Markov type model, i.e., a slowly increasing level over time.
self->last_delay_probability++;
// Validate `candidate_delay`. We have a reliable instantaneous delay
// estimate if
// 1) The valley is distinct enough (`valley_depth` > `kProbabilityOffset`)
// and
// 2) The depth of the valley is deep enough
// (`value_best_candidate` < `minimum_probability`)
// and deeper than the best estimate so far
// (`value_best_candidate` < `last_delay_probability`)
valid_candidate = ((valley_depth > kProbabilityOffset) &&
((value_best_candidate < self->minimum_probability) ||
(value_best_candidate < self->last_delay_probability)));
// Check for nonstationary farend signal.
const bool non_stationary_farend =
std::any_of(self->farend->far_bit_counts,
self->farend->far_bit_counts + self->history_size,
[](int a) { return a > 0; });
if (non_stationary_farend) {
// Only update the validation statistics when the farend is nonstationary
// as the underlying estimates are otherwise frozen.
UpdateRobustValidationStatistics(self, candidate_delay, valley_depth,
value_best_candidate);
}
if (self->robust_validation_enabled) {
int is_histogram_valid = HistogramBasedValidation(self, candidate_delay);
valid_candidate = RobustValidation(self, candidate_delay, valid_candidate,
is_histogram_valid);
}
// Only update the delay estimate when the farend is nonstationary and when
// a valid delay candidate is available.
if (non_stationary_farend && valid_candidate) {
if (candidate_delay != self->last_delay) {
self->last_delay_histogram =
(self->histogram[candidate_delay] > kLastHistogramMax
? kLastHistogramMax
: self->histogram[candidate_delay]);
// Adjust the histogram if we made a change to `last_delay`, though it was
// not the most likely one according to the histogram.
if (self->histogram[candidate_delay] <
self->histogram[self->compare_delay]) {
self->histogram[self->compare_delay] = self->histogram[candidate_delay];
}
}
self->last_delay = candidate_delay;
if (value_best_candidate < self->last_delay_probability) {
self->last_delay_probability = value_best_candidate;
}
self->compare_delay = self->last_delay;
}
return self->last_delay;
}
int WebRtc_binary_last_delay(BinaryDelayEstimator* self) {
RTC_DCHECK(self);
return self->last_delay;
}
float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) {
float quality = 0;
RTC_DCHECK(self);
if (self->robust_validation_enabled) {
// Simply a linear function of the histogram height at delay estimate.
quality = self->histogram[self->compare_delay] / kHistogramMax;
} else {
// Note that `last_delay_probability` states how deep the minimum of the
// cost function is, so it is rather an error probability.
quality = (float)(kMaxBitCountsQ9 - self->last_delay_probability) /
kMaxBitCountsQ9;
if (quality < 0) {
quality = 0;
}
}
return quality;
}
void WebRtc_MeanEstimatorFix(int32_t new_value,
int factor,
int32_t* mean_value) {
int32_t diff = new_value - *mean_value;
// mean_new = mean_value + ((new_value - mean_value) >> factor);
if (diff < 0) {
diff = -((-diff) >> factor);
} else {
diff = (diff >> factor);
}
*mean_value += diff;
}
} // namespace webrtc

View File

@ -0,0 +1,257 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs delay estimation on binary converted spectra.
// The return value is 0 - OK and -1 - Error, unless otherwise stated.
#ifndef MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
#define MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_
#include <stdint.h>
namespace webrtc {
static const int32_t kMaxBitCountsQ9 = (32 << 9); // 32 matching bits in Q9.
typedef struct {
// Pointer to bit counts.
int* far_bit_counts;
// Binary history variables.
uint32_t* binary_far_history;
int history_size;
} BinaryDelayEstimatorFarend;
typedef struct {
// Pointer to bit counts.
int32_t* mean_bit_counts;
// Array only used locally in ProcessBinarySpectrum() but whose size is
// determined at run-time.
int32_t* bit_counts;
// Binary history variables.
uint32_t* binary_near_history;
int near_history_size;
int history_size;
// Delay estimation variables.
int32_t minimum_probability;
int last_delay_probability;
// Delay memory.
int last_delay;
// Robust validation
int robust_validation_enabled;
int allowed_offset;
int last_candidate_delay;
int compare_delay;
int candidate_hits;
float* histogram;
float last_delay_histogram;
// For dynamically changing the lookahead when using SoftReset...().
int lookahead;
// Far-end binary spectrum history buffer etc.
BinaryDelayEstimatorFarend* farend;
} BinaryDelayEstimator;
// Releases the memory allocated by
// WebRtc_CreateBinaryDelayEstimatorFarend(...).
// Input:
// - self : Pointer to the binary delay estimation far-end
// instance which is the return value of
// WebRtc_CreateBinaryDelayEstimatorFarend().
//
void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self);
// Allocates the memory needed by the far-end part of the binary delay
// estimation. The memory needs to be initialized separately through
// WebRtc_InitBinaryDelayEstimatorFarend(...).
//
// Inputs:
// - history_size : Size of the far-end binary spectrum history.
//
// Return value:
// - BinaryDelayEstimatorFarend*
// : Created `handle`. If the memory can't be allocated
// or if any of the input parameters are invalid NULL
// is returned.
//
BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend(
int history_size);
// Re-allocates the buffers.
//
// Inputs:
// - self : Pointer to the binary estimation far-end instance
// which is the return value of
// WebRtc_CreateBinaryDelayEstimatorFarend().
// - history_size : Size of the far-end binary spectrum history.
//
// Return value:
// - history_size : The history size allocated.
int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self,
int history_size);
// Initializes the delay estimation far-end instance created with
// WebRtc_CreateBinaryDelayEstimatorFarend(...).
//
// Input:
// - self : Pointer to the delay estimation far-end instance.
//
// Output:
// - self : Initialized far-end instance.
//
void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self);
// Soft resets the delay estimation far-end instance created with
// WebRtc_CreateBinaryDelayEstimatorFarend(...).
//
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
//
void WebRtc_SoftResetBinaryDelayEstimatorFarend(
BinaryDelayEstimatorFarend* self,
int delay_shift);
// Adds the binary far-end spectrum to the internal far-end history buffer. This
// spectrum is used as reference when calculating the delay using
// WebRtc_ProcessBinarySpectrum().
//
// Inputs:
// - self : Pointer to the delay estimation far-end
// instance.
// - binary_far_spectrum : Far-end binary spectrum.
//
// Output:
// - self : Updated far-end instance.
//
void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* self,
uint32_t binary_far_spectrum);
// Releases the memory allocated by WebRtc_CreateBinaryDelayEstimator(...).
//
// Note that BinaryDelayEstimator utilizes BinaryDelayEstimatorFarend, but does
// not take ownership of it, hence the BinaryDelayEstimator has to be torn down
// before the far-end.
//
// Input:
// - self : Pointer to the binary delay estimation instance
// which is the return value of
// WebRtc_CreateBinaryDelayEstimator().
//
void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self);
// Allocates the memory needed by the binary delay estimation. The memory needs
// to be initialized separately through WebRtc_InitBinaryDelayEstimator(...).
//
// See WebRtc_CreateDelayEstimator(..) in delay_estimator_wrapper.c for detailed
// description.
BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator(
BinaryDelayEstimatorFarend* farend,
int max_lookahead);
// Re-allocates `history_size` dependent buffers. The far-end buffers will be
// updated at the same time if needed.
//
// Input:
// - self : Pointer to the binary estimation instance which is
// the return value of
// WebRtc_CreateBinaryDelayEstimator().
// - history_size : Size of the history buffers.
//
// Return value:
// - history_size : The history size allocated.
int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self,
int history_size);
// Initializes the delay estimation instance created with
// WebRtc_CreateBinaryDelayEstimator(...).
//
// Input:
// - self : Pointer to the delay estimation instance.
//
// Output:
// - self : Initialized instance.
//
void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self);
// Soft resets the delay estimation instance created with
// WebRtc_CreateBinaryDelayEstimator(...).
//
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
//
// Return value:
// - actual_shifts : The actual number of shifts performed.
//
int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self,
int delay_shift);
// Estimates and returns the delay between the binary far-end and binary near-
// end spectra. It is assumed the binary far-end spectrum has been added using
// WebRtc_AddBinaryFarSpectrum() prior to this call. The value will be offset by
// the lookahead (i.e. the lookahead should be subtracted from the returned
// value).
//
// Inputs:
// - self : Pointer to the delay estimation instance.
// - binary_near_spectrum : Near-end binary spectrum of the current block.
//
// Output:
// - self : Updated instance.
//
// Return value:
// - delay : >= 0 - Calculated delay value.
// -2 - Insufficient data for estimation.
//
int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self,
uint32_t binary_near_spectrum);
// Returns the last calculated delay updated by the function
// WebRtc_ProcessBinarySpectrum(...).
//
// Input:
// - self : Pointer to the delay estimation instance.
//
// Return value:
// - delay : >= 0 - Last calculated delay value
// -2 - Insufficient data for estimation.
//
int WebRtc_binary_last_delay(BinaryDelayEstimator* self);
// Returns the estimation quality of the last calculated delay updated by the
// function WebRtc_ProcessBinarySpectrum(...). The estimation quality is a value
// in the interval [0, 1]. The higher the value, the better the quality.
//
// Return value:
// - delay_quality : >= 0 - Estimation quality of last calculated
// delay value.
float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self);
// Updates the `mean_value` recursively with a step size of 2^-`factor`. This
// function is used internally in the Binary Delay Estimator as well as the
// Fixed point wrapper.
//
// Inputs:
// - new_value : The new value the mean should be updated with.
// - factor : The step size, in number of right shifts.
//
// Input/Output:
// - mean_value : Pointer to the mean value.
//
void WebRtc_MeanEstimatorFix(int32_t new_value,
int factor,
int32_t* mean_value);
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_H_

View File

@ -0,0 +1,51 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Header file including the delay estimator handle used for testing.
#ifndef MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_INTERNAL_H_
#define MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_INTERNAL_H_
#include "modules/audio_processing/utility/delay_estimator.h"
namespace webrtc {
typedef union {
float float_;
int32_t int32_;
} SpectrumType;
typedef struct {
// Pointers to mean values of spectrum.
SpectrumType* mean_far_spectrum;
// `mean_far_spectrum` initialization indicator.
int far_spectrum_initialized;
int spectrum_size;
// Far-end part of binary spectrum based delay estimation.
BinaryDelayEstimatorFarend* binary_farend;
} DelayEstimatorFarend;
typedef struct {
// Pointers to mean values of spectrum.
SpectrumType* mean_near_spectrum;
// `mean_near_spectrum` initialization indicator.
int near_spectrum_initialized;
int spectrum_size;
// Binary spectrum based delay estimator
BinaryDelayEstimator* binary_handle;
} DelayEstimator;
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_INTERNAL_H_

View File

@ -0,0 +1,489 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/utility/delay_estimator_wrapper.h"
#include <stdlib.h>
#include <string.h>
#include "modules/audio_processing/utility/delay_estimator.h"
#include "modules/audio_processing/utility/delay_estimator_internal.h"
#include "rtc_base/checks.h"
namespace webrtc {
// Only bit `kBandFirst` through bit `kBandLast` are processed and
// `kBandFirst` - `kBandLast` must be < 32.
constexpr int kBandFirst = 12;
constexpr int kBandLast = 43;
static __inline uint32_t SetBit(uint32_t in, int pos) {
uint32_t mask = (1 << pos);
uint32_t out = (in | mask);
return out;
}
// Calculates the mean recursively. Same version as WebRtc_MeanEstimatorFix(),
// but for float.
//
// Inputs:
// - new_value : New additional value.
// - scale : Scale for smoothing (should be less than 1.0).
//
// Input/Output:
// - mean_value : Pointer to the mean value for updating.
//
static void MeanEstimatorFloat(float new_value,
float scale,
float* mean_value) {
RTC_DCHECK_LT(scale, 1.0f);
*mean_value += (new_value - *mean_value) * scale;
}
// Computes the binary spectrum by comparing the input `spectrum` with a
// `threshold_spectrum`. Float and fixed point versions.
//
// Inputs:
// - spectrum : Spectrum of which the binary spectrum should be
// calculated.
// - threshold_spectrum : Threshold spectrum with which the input
// spectrum is compared.
// Return:
// - out : Binary spectrum.
//
static uint32_t BinarySpectrumFix(const uint16_t* spectrum,
SpectrumType* threshold_spectrum,
int q_domain,
int* threshold_initialized) {
int i = kBandFirst;
uint32_t out = 0;
RTC_DCHECK_LT(q_domain, 16);
if (!(*threshold_initialized)) {
// Set the `threshold_spectrum` to half the input `spectrum` as starting
// value. This speeds up the convergence.
for (i = kBandFirst; i <= kBandLast; i++) {
if (spectrum[i] > 0) {
// Convert input spectrum from Q(`q_domain`) to Q15.
int32_t spectrum_q15 = ((int32_t)spectrum[i]) << (15 - q_domain);
threshold_spectrum[i].int32_ = (spectrum_q15 >> 1);
*threshold_initialized = 1;
}
}
}
for (i = kBandFirst; i <= kBandLast; i++) {
// Convert input spectrum from Q(`q_domain`) to Q15.
int32_t spectrum_q15 = ((int32_t)spectrum[i]) << (15 - q_domain);
// Update the `threshold_spectrum`.
WebRtc_MeanEstimatorFix(spectrum_q15, 6, &(threshold_spectrum[i].int32_));
// Convert `spectrum` at current frequency bin to a binary value.
if (spectrum_q15 > threshold_spectrum[i].int32_) {
out = SetBit(out, i - kBandFirst);
}
}
return out;
}
static uint32_t BinarySpectrumFloat(const float* spectrum,
SpectrumType* threshold_spectrum,
int* threshold_initialized) {
int i = kBandFirst;
uint32_t out = 0;
const float kScale = 1 / 64.0;
if (!(*threshold_initialized)) {
// Set the `threshold_spectrum` to half the input `spectrum` as starting
// value. This speeds up the convergence.
for (i = kBandFirst; i <= kBandLast; i++) {
if (spectrum[i] > 0.0f) {
threshold_spectrum[i].float_ = (spectrum[i] / 2);
*threshold_initialized = 1;
}
}
}
for (i = kBandFirst; i <= kBandLast; i++) {
// Update the `threshold_spectrum`.
MeanEstimatorFloat(spectrum[i], kScale, &(threshold_spectrum[i].float_));
// Convert `spectrum` at current frequency bin to a binary value.
if (spectrum[i] > threshold_spectrum[i].float_) {
out = SetBit(out, i - kBandFirst);
}
}
return out;
}
void WebRtc_FreeDelayEstimatorFarend(void* handle) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*)handle;
if (handle == NULL) {
return;
}
free(self->mean_far_spectrum);
self->mean_far_spectrum = NULL;
WebRtc_FreeBinaryDelayEstimatorFarend(self->binary_farend);
self->binary_farend = NULL;
free(self);
}
void* WebRtc_CreateDelayEstimatorFarend(int spectrum_size, int history_size) {
DelayEstimatorFarend* self = NULL;
// Check if the sub band used in the delay estimation is small enough to fit
// the binary spectra in a uint32_t.
static_assert(kBandLast - kBandFirst < 32, "");
if (spectrum_size >= kBandLast) {
self = static_cast<DelayEstimatorFarend*>(
malloc(sizeof(DelayEstimatorFarend)));
}
if (self != NULL) {
int memory_fail = 0;
// Allocate memory for the binary far-end spectrum handling.
self->binary_farend = WebRtc_CreateBinaryDelayEstimatorFarend(history_size);
memory_fail |= (self->binary_farend == NULL);
// Allocate memory for spectrum buffers.
self->mean_far_spectrum = static_cast<SpectrumType*>(
malloc(spectrum_size * sizeof(SpectrumType)));
memory_fail |= (self->mean_far_spectrum == NULL);
self->spectrum_size = spectrum_size;
if (memory_fail) {
WebRtc_FreeDelayEstimatorFarend(self);
self = NULL;
}
}
return self;
}
int WebRtc_InitDelayEstimatorFarend(void* handle) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*)handle;
if (self == NULL) {
return -1;
}
// Initialize far-end part of binary delay estimator.
WebRtc_InitBinaryDelayEstimatorFarend(self->binary_farend);
// Set averaged far and near end spectra to zero.
memset(self->mean_far_spectrum, 0,
sizeof(SpectrumType) * self->spectrum_size);
// Reset initialization indicators.
self->far_spectrum_initialized = 0;
return 0;
}
void WebRtc_SoftResetDelayEstimatorFarend(void* handle, int delay_shift) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*)handle;
RTC_DCHECK(self);
WebRtc_SoftResetBinaryDelayEstimatorFarend(self->binary_farend, delay_shift);
}
int WebRtc_AddFarSpectrumFix(void* handle,
const uint16_t* far_spectrum,
int spectrum_size,
int far_q) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*)handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (far_spectrum == NULL) {
// Empty far end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
if (far_q > 15) {
// If `far_q` is larger than 15 we cannot guarantee no wrap around.
return -1;
}
// Get binary spectrum.
binary_spectrum = BinarySpectrumFix(far_spectrum, self->mean_far_spectrum,
far_q, &(self->far_spectrum_initialized));
WebRtc_AddBinaryFarSpectrum(self->binary_farend, binary_spectrum);
return 0;
}
int WebRtc_AddFarSpectrumFloat(void* handle,
const float* far_spectrum,
int spectrum_size) {
DelayEstimatorFarend* self = (DelayEstimatorFarend*)handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (far_spectrum == NULL) {
// Empty far end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
// Get binary spectrum.
binary_spectrum = BinarySpectrumFloat(far_spectrum, self->mean_far_spectrum,
&(self->far_spectrum_initialized));
WebRtc_AddBinaryFarSpectrum(self->binary_farend, binary_spectrum);
return 0;
}
void WebRtc_FreeDelayEstimator(void* handle) {
DelayEstimator* self = (DelayEstimator*)handle;
if (handle == NULL) {
return;
}
free(self->mean_near_spectrum);
self->mean_near_spectrum = NULL;
WebRtc_FreeBinaryDelayEstimator(self->binary_handle);
self->binary_handle = NULL;
free(self);
}
void* WebRtc_CreateDelayEstimator(void* farend_handle, int max_lookahead) {
DelayEstimator* self = NULL;
DelayEstimatorFarend* farend = (DelayEstimatorFarend*)farend_handle;
if (farend_handle != NULL) {
self = static_cast<DelayEstimator*>(malloc(sizeof(DelayEstimator)));
}
if (self != NULL) {
int memory_fail = 0;
// Allocate memory for the farend spectrum handling.
self->binary_handle =
WebRtc_CreateBinaryDelayEstimator(farend->binary_farend, max_lookahead);
memory_fail |= (self->binary_handle == NULL);
// Allocate memory for spectrum buffers.
self->mean_near_spectrum = static_cast<SpectrumType*>(
malloc(farend->spectrum_size * sizeof(SpectrumType)));
memory_fail |= (self->mean_near_spectrum == NULL);
self->spectrum_size = farend->spectrum_size;
if (memory_fail) {
WebRtc_FreeDelayEstimator(self);
self = NULL;
}
}
return self;
}
int WebRtc_InitDelayEstimator(void* handle) {
DelayEstimator* self = (DelayEstimator*)handle;
if (self == NULL) {
return -1;
}
// Initialize binary delay estimator.
WebRtc_InitBinaryDelayEstimator(self->binary_handle);
// Set averaged far and near end spectra to zero.
memset(self->mean_near_spectrum, 0,
sizeof(SpectrumType) * self->spectrum_size);
// Reset initialization indicators.
self->near_spectrum_initialized = 0;
return 0;
}
int WebRtc_SoftResetDelayEstimator(void* handle, int delay_shift) {
DelayEstimator* self = (DelayEstimator*)handle;
RTC_DCHECK(self);
return WebRtc_SoftResetBinaryDelayEstimator(self->binary_handle, delay_shift);
}
int WebRtc_set_history_size(void* handle, int history_size) {
DelayEstimator* self = static_cast<DelayEstimator*>(handle);
if ((self == NULL) || (history_size <= 1)) {
return -1;
}
return WebRtc_AllocateHistoryBufferMemory(self->binary_handle, history_size);
}
int WebRtc_history_size(const void* handle) {
const DelayEstimator* self = static_cast<const DelayEstimator*>(handle);
if (self == NULL) {
return -1;
}
if (self->binary_handle->farend->history_size !=
self->binary_handle->history_size) {
// Non matching history sizes.
return -1;
}
return self->binary_handle->history_size;
}
int WebRtc_set_lookahead(void* handle, int lookahead) {
DelayEstimator* self = (DelayEstimator*)handle;
RTC_DCHECK(self);
RTC_DCHECK(self->binary_handle);
if ((lookahead > self->binary_handle->near_history_size - 1) ||
(lookahead < 0)) {
return -1;
}
self->binary_handle->lookahead = lookahead;
return self->binary_handle->lookahead;
}
int WebRtc_lookahead(void* handle) {
DelayEstimator* self = (DelayEstimator*)handle;
RTC_DCHECK(self);
RTC_DCHECK(self->binary_handle);
return self->binary_handle->lookahead;
}
int WebRtc_set_allowed_offset(void* handle, int allowed_offset) {
DelayEstimator* self = (DelayEstimator*)handle;
if ((self == NULL) || (allowed_offset < 0)) {
return -1;
}
self->binary_handle->allowed_offset = allowed_offset;
return 0;
}
int WebRtc_get_allowed_offset(const void* handle) {
const DelayEstimator* self = (const DelayEstimator*)handle;
if (self == NULL) {
return -1;
}
return self->binary_handle->allowed_offset;
}
int WebRtc_enable_robust_validation(void* handle, int enable) {
DelayEstimator* self = (DelayEstimator*)handle;
if (self == NULL) {
return -1;
}
if ((enable < 0) || (enable > 1)) {
return -1;
}
RTC_DCHECK(self->binary_handle);
self->binary_handle->robust_validation_enabled = enable;
return 0;
}
int WebRtc_is_robust_validation_enabled(const void* handle) {
const DelayEstimator* self = (const DelayEstimator*)handle;
if (self == NULL) {
return -1;
}
return self->binary_handle->robust_validation_enabled;
}
int WebRtc_DelayEstimatorProcessFix(void* handle,
const uint16_t* near_spectrum,
int spectrum_size,
int near_q) {
DelayEstimator* self = (DelayEstimator*)handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (near_spectrum == NULL) {
// Empty near end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
if (near_q > 15) {
// If `near_q` is larger than 15 we cannot guarantee no wrap around.
return -1;
}
// Get binary spectra.
binary_spectrum =
BinarySpectrumFix(near_spectrum, self->mean_near_spectrum, near_q,
&(self->near_spectrum_initialized));
return WebRtc_ProcessBinarySpectrum(self->binary_handle, binary_spectrum);
}
int WebRtc_DelayEstimatorProcessFloat(void* handle,
const float* near_spectrum,
int spectrum_size) {
DelayEstimator* self = (DelayEstimator*)handle;
uint32_t binary_spectrum = 0;
if (self == NULL) {
return -1;
}
if (near_spectrum == NULL) {
// Empty near end spectrum.
return -1;
}
if (spectrum_size != self->spectrum_size) {
// Data sizes don't match.
return -1;
}
// Get binary spectrum.
binary_spectrum = BinarySpectrumFloat(near_spectrum, self->mean_near_spectrum,
&(self->near_spectrum_initialized));
return WebRtc_ProcessBinarySpectrum(self->binary_handle, binary_spectrum);
}
int WebRtc_last_delay(void* handle) {
DelayEstimator* self = (DelayEstimator*)handle;
if (self == NULL) {
return -1;
}
return WebRtc_binary_last_delay(self->binary_handle);
}
float WebRtc_last_delay_quality(void* handle) {
DelayEstimator* self = (DelayEstimator*)handle;
RTC_DCHECK(self);
return WebRtc_binary_last_delay_quality(self->binary_handle);
}
} // namespace webrtc

View File

@ -0,0 +1,248 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Performs delay estimation on block by block basis.
// The return value is 0 - OK and -1 - Error, unless otherwise stated.
#ifndef MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
#define MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_
#include <stdint.h>
namespace webrtc {
// Releases the memory allocated by WebRtc_CreateDelayEstimatorFarend(...)
void WebRtc_FreeDelayEstimatorFarend(void* handle);
// Allocates the memory needed by the far-end part of the delay estimation. The
// memory needs to be initialized separately through
// WebRtc_InitDelayEstimatorFarend(...).
//
// Inputs:
// - spectrum_size : Size of the spectrum used both in far-end and
// near-end. Used to allocate memory for spectrum
// specific buffers.
// - history_size : The far-end history buffer size. A change in buffer
// size can be forced with WebRtc_set_history_size().
// Note that the maximum delay which can be estimated is
// determined together with WebRtc_set_lookahead().
//
// Return value:
// - void* : Created `handle`. If the memory can't be allocated or
// if any of the input parameters are invalid NULL is
// returned.
void* WebRtc_CreateDelayEstimatorFarend(int spectrum_size, int history_size);
// Initializes the far-end part of the delay estimation instance returned by
// WebRtc_CreateDelayEstimatorFarend(...)
int WebRtc_InitDelayEstimatorFarend(void* handle);
// Soft resets the far-end part of the delay estimation instance returned by
// WebRtc_CreateDelayEstimatorFarend(...).
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
void WebRtc_SoftResetDelayEstimatorFarend(void* handle, int delay_shift);
// Adds the far-end spectrum to the far-end history buffer. This spectrum is
// used as reference when calculating the delay using
// WebRtc_ProcessSpectrum().
//
// Inputs:
// - far_spectrum : Far-end spectrum.
// - spectrum_size : The size of the data arrays (same for both far- and
// near-end).
// - far_q : The Q-domain of the far-end data.
//
// Output:
// - handle : Updated far-end instance.
//
int WebRtc_AddFarSpectrumFix(void* handle,
const uint16_t* far_spectrum,
int spectrum_size,
int far_q);
// See WebRtc_AddFarSpectrumFix() for description.
int WebRtc_AddFarSpectrumFloat(void* handle,
const float* far_spectrum,
int spectrum_size);
// Releases the memory allocated by WebRtc_CreateDelayEstimator(...)
void WebRtc_FreeDelayEstimator(void* handle);
// Allocates the memory needed by the delay estimation. The memory needs to be
// initialized separately through WebRtc_InitDelayEstimator(...).
//
// Inputs:
// - farend_handle : Pointer to the far-end part of the delay estimation
// instance created prior to this call using
// WebRtc_CreateDelayEstimatorFarend().
//
// Note that WebRtc_CreateDelayEstimator does not take
// ownership of `farend_handle`, which has to be torn
// down properly after this instance.
//
// - max_lookahead : Maximum amount of non-causal lookahead allowed. The
// actual amount of lookahead used can be controlled by
// WebRtc_set_lookahead(...). The default `lookahead` is
// set to `max_lookahead` at create time. Use
// WebRtc_set_lookahead(...) before start if a different
// value is desired.
//
// Using lookahead can detect cases in which a near-end
// signal occurs before the corresponding far-end signal.
// It will delay the estimate for the current block by an
// equal amount, and the returned values will be offset
// by it.
//
// A value of zero is the typical no-lookahead case.
// This also represents the minimum delay which can be
// estimated.
//
// Note that the effective range of delay estimates is
// [-`lookahead`,... ,`history_size`-`lookahead`)
// where `history_size` is set through
// WebRtc_set_history_size().
//
// Return value:
// - void* : Created `handle`. If the memory can't be allocated or
// if any of the input parameters are invalid NULL is
// returned.
void* WebRtc_CreateDelayEstimator(void* farend_handle, int max_lookahead);
// Initializes the delay estimation instance returned by
// WebRtc_CreateDelayEstimator(...)
int WebRtc_InitDelayEstimator(void* handle);
// Soft resets the delay estimation instance returned by
// WebRtc_CreateDelayEstimator(...)
// Input:
// - delay_shift : The amount of blocks to shift history buffers.
//
// Return value:
// - actual_shifts : The actual number of shifts performed.
int WebRtc_SoftResetDelayEstimator(void* handle, int delay_shift);
// Sets the effective `history_size` used. Valid values from 2. We simply need
// at least two delays to compare to perform an estimate. If `history_size` is
// changed, buffers are reallocated filling in with zeros if necessary.
// Note that changing the `history_size` affects both buffers in far-end and
// near-end. Hence it is important to change all DelayEstimators that use the
// same reference far-end, to the same `history_size` value.
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - history_size : Effective history size to be used.
// Return value:
// - new_history_size : The new history size used. If the memory was not able
// to be allocated 0 is returned.
int WebRtc_set_history_size(void* handle, int history_size);
// Returns the history_size currently used.
// Input:
// - handle : Pointer to the delay estimation instance.
int WebRtc_history_size(const void* handle);
// Sets the amount of `lookahead` to use. Valid values are [0, max_lookahead]
// where `max_lookahead` was set at create time through
// WebRtc_CreateDelayEstimator(...).
//
// Input:
// - handle : Pointer to the delay estimation instance.
// - lookahead : The amount of lookahead to be used.
//
// Return value:
// - new_lookahead : The actual amount of lookahead set, unless `handle` is
// a NULL pointer or `lookahead` is invalid, for which an
// error is returned.
int WebRtc_set_lookahead(void* handle, int lookahead);
// Returns the amount of lookahead we currently use.
// Input:
// - handle : Pointer to the delay estimation instance.
int WebRtc_lookahead(void* handle);
// Sets the `allowed_offset` used in the robust validation scheme. If the
// delay estimator is used in an echo control component, this parameter is
// related to the filter length. In principle `allowed_offset` should be set to
// the echo control filter length minus the expected echo duration, i.e., the
// delay offset the echo control can handle without quality regression. The
// default value, used if not set manually, is zero. Note that `allowed_offset`
// has to be non-negative.
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - allowed_offset : The amount of delay offset, measured in partitions,
// the echo control filter can handle.
int WebRtc_set_allowed_offset(void* handle, int allowed_offset);
// Returns the `allowed_offset` in number of partitions.
int WebRtc_get_allowed_offset(const void* handle);
// Enables/Disables a robust validation functionality in the delay estimation.
// This is by default set to disabled at create time. The state is preserved
// over a reset.
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - enable : Enable (1) or disable (0) this feature.
int WebRtc_enable_robust_validation(void* handle, int enable);
// Returns 1 if robust validation is enabled and 0 if disabled.
int WebRtc_is_robust_validation_enabled(const void* handle);
// Estimates and returns the delay between the far-end and near-end blocks. The
// value will be offset by the lookahead (i.e. the lookahead should be
// subtracted from the returned value).
// Inputs:
// - handle : Pointer to the delay estimation instance.
// - near_spectrum : Pointer to the near-end spectrum data of the current
// block.
// - spectrum_size : The size of the data arrays (same for both far- and
// near-end).
// - near_q : The Q-domain of the near-end data.
//
// Output:
// - handle : Updated instance.
//
// Return value:
// - delay : >= 0 - Calculated delay value.
// -1 - Error.
// -2 - Insufficient data for estimation.
int WebRtc_DelayEstimatorProcessFix(void* handle,
const uint16_t* near_spectrum,
int spectrum_size,
int near_q);
// See WebRtc_DelayEstimatorProcessFix() for description.
int WebRtc_DelayEstimatorProcessFloat(void* handle,
const float* near_spectrum,
int spectrum_size);
// Returns the last calculated delay updated by the function
// WebRtc_DelayEstimatorProcess(...).
//
// Input:
// - handle : Pointer to the delay estimation instance.
//
// Return value:
// - delay : >= 0 - Last calculated delay value.
// -1 - Error.
// -2 - Insufficient data for estimation.
int WebRtc_last_delay(void* handle);
// Returns the estimation quality/probability of the last calculated delay
// updated by the function WebRtc_DelayEstimatorProcess(...). The estimation
// quality is a value in the interval [0, 1]. The higher the value, the better
// the quality.
//
// Return value:
// - delay_quality : >= 0 - Estimation quality of last calculated delay.
float WebRtc_last_delay_quality(void* handle);
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_UTILITY_DELAY_ESTIMATOR_WRAPPER_H_