/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This header file includes all of the fix point signal processing library * (SPL) function descriptions and declarations. For specific function calls, * see bottom of file. */ #ifndef COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_ #define COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_ #include #include "common_audio/signal_processing/dot_product_with_scale.h" // Macros specific for the fixed point implementation #define WEBRTC_SPL_WORD16_MAX 32767 #define WEBRTC_SPL_WORD16_MIN -32768 #define WEBRTC_SPL_WORD32_MAX (int32_t)0x7fffffff #define WEBRTC_SPL_WORD32_MIN (int32_t)0x80000000 #define WEBRTC_SPL_MAX_LPC_ORDER 14 #define WEBRTC_SPL_MIN(A, B) (A < B ? A : B) // Get min value #define WEBRTC_SPL_MAX(A, B) (A > B ? A : B) // Get max value // TODO(kma/bjorn): For the next two macros, investigate how to correct the code // for inputs of a = WEBRTC_SPL_WORD16_MIN or WEBRTC_SPL_WORD32_MIN. #define WEBRTC_SPL_ABS_W16(a) (((int16_t)a >= 0) ? ((int16_t)a) : -((int16_t)a)) #define WEBRTC_SPL_ABS_W32(a) (((int32_t)a >= 0) ? ((int32_t)a) : -((int32_t)a)) #define WEBRTC_SPL_MUL(a, b) ((int32_t)((int32_t)(a) * (int32_t)(b))) #define WEBRTC_SPL_UMUL(a, b) ((uint32_t)((uint32_t)(a) * (uint32_t)(b))) #define WEBRTC_SPL_UMUL_32_16(a, b) ((uint32_t)((uint32_t)(a) * (uint16_t)(b))) #define WEBRTC_SPL_MUL_16_U16(a, b) ((int32_t)(int16_t)(a) * (uint16_t)(b)) // clang-format off // clang-format would choose some identation // leading to presubmit error (cpplint.py) #ifndef WEBRTC_ARCH_ARM_V7 // For ARMv7 platforms, these are inline functions in spl_inl_armv7.h #ifndef MIPS32_LE // For MIPS platforms, these are inline functions in spl_inl_mips.h #define WEBRTC_SPL_MUL_16_16(a, b) ((int32_t)(((int16_t)(a)) * ((int16_t)(b)))) #define WEBRTC_SPL_MUL_16_32_RSFT16(a, b) \ (WEBRTC_SPL_MUL_16_16(a, b >> 16) + \ ((WEBRTC_SPL_MUL_16_16(a, (b & 0xffff) >> 1) + 0x4000) >> 15)) #endif #endif #define WEBRTC_SPL_MUL_16_32_RSFT11(a, b) \ (WEBRTC_SPL_MUL_16_16(a, (b) >> 16) * (1 << 5) + \ (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x0200) >> 10)) #define WEBRTC_SPL_MUL_16_32_RSFT14(a, b) \ (WEBRTC_SPL_MUL_16_16(a, (b) >> 16) * (1 << 2) + \ (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x1000) >> 13)) #define WEBRTC_SPL_MUL_16_32_RSFT15(a, b) \ ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) * (1 << 1)) + \ (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x2000) >> 14)) // clang-format on #define WEBRTC_SPL_MUL_16_16_RSFT(a, b, c) (WEBRTC_SPL_MUL_16_16(a, b) >> (c)) #define WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, c) \ ((WEBRTC_SPL_MUL_16_16(a, b) + ((int32_t)(((int32_t)1) << ((c)-1)))) >> (c)) // C + the 32 most significant bits of A * B #define WEBRTC_SPL_SCALEDIFF32(A, B, C) \ (C + (B >> 16) * A + (((uint32_t)(B & 0x0000FFFF) * A) >> 16)) #define WEBRTC_SPL_SAT(a, b, c) (b > a ? a : b < c ? c : b) // Shifting with negative numbers allowed // Positive means left shift #define WEBRTC_SPL_SHIFT_W32(x, c) ((c) >= 0 ? (x) * (1 << (c)) : (x) >> -(c)) // Shifting with negative numbers not allowed // We cannot do casting here due to signed/unsigned problem #define WEBRTC_SPL_LSHIFT_W32(x, c) ((x) << (c)) #define WEBRTC_SPL_RSHIFT_U32(x, c) ((uint32_t)(x) >> (c)) #define WEBRTC_SPL_RAND(a) ((int16_t)((((int16_t)a * 18816) >> 7) & 0x00007fff)) #ifdef __cplusplus extern "C" { #endif #define WEBRTC_SPL_MEMCPY_W16(v1, v2, length) \ memcpy(v1, v2, (length) * sizeof(int16_t)) // inline functions: #include "common_audio/signal_processing/include/spl_inl.h" // third party math functions #include "common_audio/third_party/spl_sqrt_floor/spl_sqrt_floor.h" int16_t WebRtcSpl_GetScalingSquare(int16_t* in_vector, size_t in_vector_length, size_t times); // Copy and set operations. Implementation in copy_set_operations.c. // Descriptions at bottom of file. void WebRtcSpl_MemSetW16(int16_t* vector, int16_t set_value, size_t vector_length); void WebRtcSpl_MemSetW32(int32_t* vector, int32_t set_value, size_t vector_length); void WebRtcSpl_MemCpyReversedOrder(int16_t* out_vector, int16_t* in_vector, size_t vector_length); void WebRtcSpl_CopyFromEndW16(const int16_t* in_vector, size_t in_vector_length, size_t samples, int16_t* out_vector); void WebRtcSpl_ZerosArrayW16(int16_t* vector, size_t vector_length); void WebRtcSpl_ZerosArrayW32(int32_t* vector, size_t vector_length); // End: Copy and set operations. // Minimum and maximum operation functions and their pointers. // Implementation in min_max_operations.c. // Returns the largest absolute value in a signed 16-bit vector. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // // Return value : Maximum absolute value in vector. typedef int16_t (*MaxAbsValueW16)(const int16_t* vector, size_t length); extern const MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16; int16_t WebRtcSpl_MaxAbsValueW16C(const int16_t* vector, size_t length); #if defined(WEBRTC_HAS_NEON) int16_t WebRtcSpl_MaxAbsValueW16Neon(const int16_t* vector, size_t length); #endif #if defined(MIPS32_LE) int16_t WebRtcSpl_MaxAbsValueW16_mips(const int16_t* vector, size_t length); #endif // Returns the largest absolute value in a signed 32-bit vector. // // Input: // - vector : 32-bit input vector. // - length : Number of samples in vector. // // Return value : Maximum absolute value in vector. typedef int32_t (*MaxAbsValueW32)(const int32_t* vector, size_t length); extern const MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32; int32_t WebRtcSpl_MaxAbsValueW32C(const int32_t* vector, size_t length); #if defined(WEBRTC_HAS_NEON) int32_t WebRtcSpl_MaxAbsValueW32Neon(const int32_t* vector, size_t length); #endif #if defined(MIPS_DSP_R1_LE) int32_t WebRtcSpl_MaxAbsValueW32_mips(const int32_t* vector, size_t length); #endif // Returns the maximum value of a 16-bit vector. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // // Return value : Maximum sample value in `vector`. typedef int16_t (*MaxValueW16)(const int16_t* vector, size_t length); extern const MaxValueW16 WebRtcSpl_MaxValueW16; int16_t WebRtcSpl_MaxValueW16C(const int16_t* vector, size_t length); #if defined(WEBRTC_HAS_NEON) int16_t WebRtcSpl_MaxValueW16Neon(const int16_t* vector, size_t length); #endif #if defined(MIPS32_LE) int16_t WebRtcSpl_MaxValueW16_mips(const int16_t* vector, size_t length); #endif // Returns the maximum value of a 32-bit vector. // // Input: // - vector : 32-bit input vector. // - length : Number of samples in vector. // // Return value : Maximum sample value in `vector`. typedef int32_t (*MaxValueW32)(const int32_t* vector, size_t length); extern const MaxValueW32 WebRtcSpl_MaxValueW32; int32_t WebRtcSpl_MaxValueW32C(const int32_t* vector, size_t length); #if defined(WEBRTC_HAS_NEON) int32_t WebRtcSpl_MaxValueW32Neon(const int32_t* vector, size_t length); #endif #if defined(MIPS32_LE) int32_t WebRtcSpl_MaxValueW32_mips(const int32_t* vector, size_t length); #endif // Returns the minimum value of a 16-bit vector. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // // Return value : Minimum sample value in `vector`. typedef int16_t (*MinValueW16)(const int16_t* vector, size_t length); extern const MinValueW16 WebRtcSpl_MinValueW16; int16_t WebRtcSpl_MinValueW16C(const int16_t* vector, size_t length); #if defined(WEBRTC_HAS_NEON) int16_t WebRtcSpl_MinValueW16Neon(const int16_t* vector, size_t length); #endif #if defined(MIPS32_LE) int16_t WebRtcSpl_MinValueW16_mips(const int16_t* vector, size_t length); #endif // Returns the minimum value of a 32-bit vector. // // Input: // - vector : 32-bit input vector. // - length : Number of samples in vector. // // Return value : Minimum sample value in `vector`. typedef int32_t (*MinValueW32)(const int32_t* vector, size_t length); extern const MinValueW32 WebRtcSpl_MinValueW32; int32_t WebRtcSpl_MinValueW32C(const int32_t* vector, size_t length); #if defined(WEBRTC_HAS_NEON) int32_t WebRtcSpl_MinValueW32Neon(const int32_t* vector, size_t length); #endif #if defined(MIPS32_LE) int32_t WebRtcSpl_MinValueW32_mips(const int32_t* vector, size_t length); #endif // Returns both the minimum and maximum values of a 16-bit vector. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // Ouput: // - max_val : Maximum sample value in `vector`. // - min_val : Minimum sample value in `vector`. void WebRtcSpl_MinMaxW16(const int16_t* vector, size_t length, int16_t* min_val, int16_t* max_val); #if defined(WEBRTC_HAS_NEON) void WebRtcSpl_MinMaxW16Neon(const int16_t* vector, size_t length, int16_t* min_val, int16_t* max_val); #endif // Returns the vector index to the largest absolute value of a 16-bit vector. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // // Return value : Index to the maximum absolute value in vector. // If there are multiple equal maxima, return the index of the // first. -32768 will always have precedence over 32767 (despite // -32768 presenting an int16 absolute value of 32767). size_t WebRtcSpl_MaxAbsIndexW16(const int16_t* vector, size_t length); // Returns the element with the largest absolute value of a 16-bit vector. Note // that this function can return a negative value. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // // Return value : The element with the largest absolute value. Note that this // may be a negative value. int16_t WebRtcSpl_MaxAbsElementW16(const int16_t* vector, size_t length); // Returns the vector index to the maximum sample value of a 16-bit vector. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // // Return value : Index to the maximum value in vector (if multiple // indexes have the maximum, return the first). size_t WebRtcSpl_MaxIndexW16(const int16_t* vector, size_t length); // Returns the vector index to the maximum sample value of a 32-bit vector. // // Input: // - vector : 32-bit input vector. // - length : Number of samples in vector. // // Return value : Index to the maximum value in vector (if multiple // indexes have the maximum, return the first). size_t WebRtcSpl_MaxIndexW32(const int32_t* vector, size_t length); // Returns the vector index to the minimum sample value of a 16-bit vector. // // Input: // - vector : 16-bit input vector. // - length : Number of samples in vector. // // Return value : Index to the mimimum value in vector (if multiple // indexes have the minimum, return the first). size_t WebRtcSpl_MinIndexW16(const int16_t* vector, size_t length); // Returns the vector index to the minimum sample value of a 32-bit vector. // // Input: // - vector : 32-bit input vector. // - length : Number of samples in vector. // // Return value : Index to the mimimum value in vector (if multiple // indexes have the minimum, return the first). size_t WebRtcSpl_MinIndexW32(const int32_t* vector, size_t length); // End: Minimum and maximum operations. // Vector scaling operations. Implementation in vector_scaling_operations.c. // Description at bottom of file. void WebRtcSpl_VectorBitShiftW16(int16_t* out_vector, size_t vector_length, const int16_t* in_vector, int16_t right_shifts); void WebRtcSpl_VectorBitShiftW32(int32_t* out_vector, size_t vector_length, const int32_t* in_vector, int16_t right_shifts); void WebRtcSpl_VectorBitShiftW32ToW16(int16_t* out_vector, size_t vector_length, const int32_t* in_vector, int right_shifts); void WebRtcSpl_ScaleVector(const int16_t* in_vector, int16_t* out_vector, int16_t gain, size_t vector_length, int16_t right_shifts); void WebRtcSpl_ScaleVectorWithSat(const int16_t* in_vector, int16_t* out_vector, int16_t gain, size_t vector_length, int16_t right_shifts); void WebRtcSpl_ScaleAndAddVectors(const int16_t* in_vector1, int16_t gain1, int right_shifts1, const int16_t* in_vector2, int16_t gain2, int right_shifts2, int16_t* out_vector, size_t vector_length); // The functions (with related pointer) perform the vector operation: // out_vector[k] = ((scale1 * in_vector1[k]) + (scale2 * in_vector2[k]) // + round_value) >> right_shifts, // where round_value = (1 << right_shifts) >> 1. // // Input: // - in_vector1 : Input vector 1 // - in_vector1_scale : Gain to be used for vector 1 // - in_vector2 : Input vector 2 // - in_vector2_scale : Gain to be used for vector 2 // - right_shifts : Number of right bit shifts to be applied // - length : Number of elements in the input vectors // // Output: // - out_vector : Output vector // Return value : 0 if OK, -1 if (in_vector1 == null // || in_vector2 == null || out_vector == null // || length <= 0 || right_shift < 0). typedef int (*ScaleAndAddVectorsWithRound)(const int16_t* in_vector1, int16_t in_vector1_scale, const int16_t* in_vector2, int16_t in_vector2_scale, int right_shifts, int16_t* out_vector, size_t length); extern const ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound; int WebRtcSpl_ScaleAndAddVectorsWithRoundC(const int16_t* in_vector1, int16_t in_vector1_scale, const int16_t* in_vector2, int16_t in_vector2_scale, int right_shifts, int16_t* out_vector, size_t length); #if defined(MIPS_DSP_R1_LE) int WebRtcSpl_ScaleAndAddVectorsWithRound_mips(const int16_t* in_vector1, int16_t in_vector1_scale, const int16_t* in_vector2, int16_t in_vector2_scale, int right_shifts, int16_t* out_vector, size_t length); #endif // End: Vector scaling operations. // iLBC specific functions. Implementations in ilbc_specific_functions.c. // Description at bottom of file. void WebRtcSpl_ReverseOrderMultArrayElements(int16_t* out_vector, const int16_t* in_vector, const int16_t* window, size_t vector_length, int16_t right_shifts); void WebRtcSpl_ElementwiseVectorMult(int16_t* out_vector, const int16_t* in_vector, const int16_t* window, size_t vector_length, int16_t right_shifts); void WebRtcSpl_AddVectorsAndShift(int16_t* out_vector, const int16_t* in_vector1, const int16_t* in_vector2, size_t vector_length, int16_t right_shifts); void WebRtcSpl_AddAffineVectorToVector(int16_t* out_vector, const int16_t* in_vector, int16_t gain, int32_t add_constant, int16_t right_shifts, size_t vector_length); void WebRtcSpl_AffineTransformVector(int16_t* out_vector, const int16_t* in_vector, int16_t gain, int32_t add_constant, int16_t right_shifts, size_t vector_length); // End: iLBC specific functions. // Signal processing operations. // A 32-bit fix-point implementation of auto-correlation computation // // Input: // - in_vector : Vector to calculate autocorrelation upon // - in_vector_length : Length (in samples) of `vector` // - order : The order up to which the autocorrelation should be // calculated // // Output: // - result : auto-correlation values (values should be seen // relative to each other since the absolute values // might have been down shifted to avoid overflow) // // - scale : The number of left shifts required to obtain the // auto-correlation in Q0 // // Return value : Number of samples in `result`, i.e. (order+1) size_t WebRtcSpl_AutoCorrelation(const int16_t* in_vector, size_t in_vector_length, size_t order, int32_t* result, int* scale); // A 32-bit fix-point implementation of the Levinson-Durbin algorithm that // does NOT use the 64 bit class // // Input: // - auto_corr : Vector with autocorrelation values of length >= `order`+1 // - order : The LPC filter order (support up to order 20) // // Output: // - lpc_coef : lpc_coef[0..order] LPC coefficients in Q12 // - refl_coef : refl_coef[0...order-1]| Reflection coefficients in Q15 // // Return value : 1 for stable 0 for unstable int16_t WebRtcSpl_LevinsonDurbin(const int32_t* auto_corr, int16_t* lpc_coef, int16_t* refl_coef, size_t order); // Converts reflection coefficients `refl_coef` to LPC coefficients `lpc_coef`. // This version is a 16 bit operation. // // NOTE: The 16 bit refl_coef -> lpc_coef conversion might result in a // "slightly unstable" filter (i.e., a pole just outside the unit circle) in // "rare" cases even if the reflection coefficients are stable. // // Input: // - refl_coef : Reflection coefficients in Q15 that should be converted // to LPC coefficients // - use_order : Number of coefficients in `refl_coef` // // Output: // - lpc_coef : LPC coefficients in Q12 void WebRtcSpl_ReflCoefToLpc(const int16_t* refl_coef, int use_order, int16_t* lpc_coef); // Converts LPC coefficients `lpc_coef` to reflection coefficients `refl_coef`. // This version is a 16 bit operation. // The conversion is implemented by the step-down algorithm. // // Input: // - lpc_coef : LPC coefficients in Q12, that should be converted to // reflection coefficients // - use_order : Number of coefficients in `lpc_coef` // // Output: // - refl_coef : Reflection coefficients in Q15. void WebRtcSpl_LpcToReflCoef(int16_t* lpc_coef, int use_order, int16_t* refl_coef); // Calculates reflection coefficients (16 bit) from auto-correlation values // // Input: // - auto_corr : Auto-correlation values // - use_order : Number of coefficients wanted be calculated // // Output: // - refl_coef : Reflection coefficients in Q15. void WebRtcSpl_AutoCorrToReflCoef(const int32_t* auto_corr, int use_order, int16_t* refl_coef); // The functions (with related pointer) calculate the cross-correlation between // two sequences `seq1` and `seq2`. // `seq1` is fixed and `seq2` slides as the pointer is increased with the // amount `step_seq2`. Note the arguments should obey the relationship: // `dim_seq` - 1 + `step_seq2` * (`dim_cross_correlation` - 1) < // buffer size of `seq2` // // Input: // - seq1 : First sequence (fixed throughout the correlation) // - seq2 : Second sequence (slides `step_vector2` for each // new correlation) // - dim_seq : Number of samples to use in the cross-correlation // - dim_cross_correlation : Number of cross-correlations to calculate (the // start position for `vector2` is updated for each // new one) // - right_shifts : Number of right bit shifts to use. This will // become the output Q-domain. // - step_seq2 : How many (positive or negative) steps the // `vector2` pointer should be updated for each new // cross-correlation value. // // Output: // - cross_correlation : The cross-correlation in Q(-right_shifts) typedef void (*CrossCorrelation)(int32_t* cross_correlation, const int16_t* seq1, const int16_t* seq2, size_t dim_seq, size_t dim_cross_correlation, int right_shifts, int step_seq2); extern const CrossCorrelation WebRtcSpl_CrossCorrelation; void WebRtcSpl_CrossCorrelationC(int32_t* cross_correlation, const int16_t* seq1, const int16_t* seq2, size_t dim_seq, size_t dim_cross_correlation, int right_shifts, int step_seq2); #if defined(WEBRTC_HAS_NEON) void WebRtcSpl_CrossCorrelationNeon(int32_t* cross_correlation, const int16_t* seq1, const int16_t* seq2, size_t dim_seq, size_t dim_cross_correlation, int right_shifts, int step_seq2); #endif #if defined(MIPS32_LE) void WebRtcSpl_CrossCorrelation_mips(int32_t* cross_correlation, const int16_t* seq1, const int16_t* seq2, size_t dim_seq, size_t dim_cross_correlation, int right_shifts, int step_seq2); #endif // Creates (the first half of) a Hanning window. Size must be at least 1 and // at most 512. // // Input: // - size : Length of the requested Hanning window (1 to 512) // // Output: // - window : Hanning vector in Q14. void WebRtcSpl_GetHanningWindow(int16_t* window, size_t size); // Calculates y[k] = sqrt(1 - x[k]^2) for each element of the input vector // `in_vector`. Input and output values are in Q15. // // Inputs: // - in_vector : Values to calculate sqrt(1 - x^2) of // - vector_length : Length of vector `in_vector` // // Output: // - out_vector : Output values in Q15 void WebRtcSpl_SqrtOfOneMinusXSquared(int16_t* in_vector, size_t vector_length, int16_t* out_vector); // End: Signal processing operations. // Randomization functions. Implementations collected in // randomization_functions.c and descriptions at bottom of this file. int16_t WebRtcSpl_RandU(uint32_t* seed); int16_t WebRtcSpl_RandN(uint32_t* seed); int16_t WebRtcSpl_RandUArray(int16_t* vector, int16_t vector_length, uint32_t* seed); // End: Randomization functions. // Math functions int32_t WebRtcSpl_Sqrt(int32_t value); // Divisions. Implementations collected in division_operations.c and // descriptions at bottom of this file. uint32_t WebRtcSpl_DivU32U16(uint32_t num, uint16_t den); int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den); int16_t WebRtcSpl_DivW32W16ResW16(int32_t num, int16_t den); int32_t WebRtcSpl_DivResultInQ31(int32_t num, int32_t den); int32_t WebRtcSpl_DivW32HiLow(int32_t num, int16_t den_hi, int16_t den_low); // End: Divisions. int32_t WebRtcSpl_Energy(int16_t* vector, size_t vector_length, int* scale_factor); // Filter operations. size_t WebRtcSpl_FilterAR(const int16_t* ar_coef, size_t ar_coef_length, const int16_t* in_vector, size_t in_vector_length, int16_t* filter_state, size_t filter_state_length, int16_t* filter_state_low, size_t filter_state_low_length, int16_t* out_vector, int16_t* out_vector_low, size_t out_vector_low_length); // WebRtcSpl_FilterMAFastQ12(...) // // Performs a MA filtering on a vector in Q12 // // Input: // - in_vector : Input samples (state in positions // in_vector[-order] .. in_vector[-1]) // - ma_coef : Filter coefficients (in Q12) // - ma_coef_length : Number of B coefficients (order+1) // - vector_length : Number of samples to be filtered // // Output: // - out_vector : Filtered samples // void WebRtcSpl_FilterMAFastQ12(const int16_t* in_vector, int16_t* out_vector, const int16_t* ma_coef, size_t ma_coef_length, size_t vector_length); // Performs a AR filtering on a vector in Q12 // Input: // - data_in : Input samples // - data_out : State information in positions // data_out[-order] .. data_out[-1] // - coefficients : Filter coefficients (in Q12) // - coefficients_length: Number of coefficients (order+1) // - data_length : Number of samples to be filtered // Output: // - data_out : Filtered samples void WebRtcSpl_FilterARFastQ12(const int16_t* data_in, int16_t* data_out, const int16_t* __restrict coefficients, size_t coefficients_length, size_t data_length); // The functions (with related pointer) perform a MA down sampling filter // on a vector. // Input: // - data_in : Input samples (state in positions // data_in[-order] .. data_in[-1]) // - data_in_length : Number of samples in `data_in` to be filtered. // This must be at least // `delay` + `factor`*(`out_vector_length`-1) + 1) // - data_out_length : Number of down sampled samples desired // - coefficients : Filter coefficients (in Q12) // - coefficients_length: Number of coefficients (order+1) // - factor : Decimation factor // - delay : Delay of filter (compensated for in out_vector) // Output: // - data_out : Filtered samples // Return value : 0 if OK, -1 if `in_vector` is too short typedef int (*DownsampleFast)(const int16_t* data_in, size_t data_in_length, int16_t* data_out, size_t data_out_length, const int16_t* __restrict coefficients, size_t coefficients_length, int factor, size_t delay); extern const DownsampleFast WebRtcSpl_DownsampleFast; int WebRtcSpl_DownsampleFastC(const int16_t* data_in, size_t data_in_length, int16_t* data_out, size_t data_out_length, const int16_t* __restrict coefficients, size_t coefficients_length, int factor, size_t delay); #if defined(WEBRTC_HAS_NEON) int WebRtcSpl_DownsampleFastNeon(const int16_t* data_in, size_t data_in_length, int16_t* data_out, size_t data_out_length, const int16_t* __restrict coefficients, size_t coefficients_length, int factor, size_t delay); #endif #if defined(MIPS32_LE) int WebRtcSpl_DownsampleFast_mips(const int16_t* data_in, size_t data_in_length, int16_t* data_out, size_t data_out_length, const int16_t* __restrict coefficients, size_t coefficients_length, int factor, size_t delay); #endif // End: Filter operations. // FFT operations int WebRtcSpl_ComplexFFT(int16_t vector[], int stages, int mode); int WebRtcSpl_ComplexIFFT(int16_t vector[], int stages, int mode); // Treat a 16-bit complex data buffer `complex_data` as an array of 32-bit // values, and swap elements whose indexes are bit-reverses of each other. // // Input: // - complex_data : Complex data buffer containing 2^`stages` real // elements interleaved with 2^`stages` imaginary // elements: [Re Im Re Im Re Im....] // - stages : Number of FFT stages. Must be at least 3 and at most // 10, since the table WebRtcSpl_kSinTable1024[] is 1024 // elements long. // // Output: // - complex_data : The complex data buffer. void WebRtcSpl_ComplexBitReverse(int16_t* __restrict complex_data, int stages); // End: FFT operations /************************************************************ * * RESAMPLING FUNCTIONS AND THEIR STRUCTS ARE DEFINED BELOW * ************************************************************/ /******************************************************************* * resample.c * * Includes the following resampling combinations * 22 kHz -> 16 kHz * 16 kHz -> 22 kHz * 22 kHz -> 8 kHz * 8 kHz -> 22 kHz * ******************************************************************/ // state structure for 22 -> 16 resampler typedef struct { int32_t S_22_44[8]; int32_t S_44_32[8]; int32_t S_32_16[8]; } WebRtcSpl_State22khzTo16khz; void WebRtcSpl_Resample22khzTo16khz(const int16_t* in, int16_t* out, WebRtcSpl_State22khzTo16khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state); // state structure for 16 -> 22 resampler typedef struct { int32_t S_16_32[8]; int32_t S_32_22[8]; } WebRtcSpl_State16khzTo22khz; void WebRtcSpl_Resample16khzTo22khz(const int16_t* in, int16_t* out, WebRtcSpl_State16khzTo22khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state); // state structure for 22 -> 8 resampler typedef struct { int32_t S_22_22[16]; int32_t S_22_16[8]; int32_t S_16_8[8]; } WebRtcSpl_State22khzTo8khz; void WebRtcSpl_Resample22khzTo8khz(const int16_t* in, int16_t* out, WebRtcSpl_State22khzTo8khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state); // state structure for 8 -> 22 resampler typedef struct { int32_t S_8_16[8]; int32_t S_16_11[8]; int32_t S_11_22[8]; } WebRtcSpl_State8khzTo22khz; void WebRtcSpl_Resample8khzTo22khz(const int16_t* in, int16_t* out, WebRtcSpl_State8khzTo22khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state); /******************************************************************* * resample_fractional.c * Functions for internal use in the other resample functions * * Includes the following resampling combinations * 48 kHz -> 32 kHz * 32 kHz -> 24 kHz * 44 kHz -> 32 kHz * ******************************************************************/ void WebRtcSpl_Resample48khzTo32khz(const int32_t* In, int32_t* Out, size_t K); void WebRtcSpl_Resample32khzTo24khz(const int32_t* In, int32_t* Out, size_t K); void WebRtcSpl_Resample44khzTo32khz(const int32_t* In, int32_t* Out, size_t K); /******************************************************************* * resample_48khz.c * * Includes the following resampling combinations * 48 kHz -> 16 kHz * 16 kHz -> 48 kHz * 48 kHz -> 8 kHz * 8 kHz -> 48 kHz * ******************************************************************/ typedef struct { int32_t S_48_48[16]; int32_t S_48_32[8]; int32_t S_32_16[8]; } WebRtcSpl_State48khzTo16khz; void WebRtcSpl_Resample48khzTo16khz(const int16_t* in, int16_t* out, WebRtcSpl_State48khzTo16khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample48khzTo16khz(WebRtcSpl_State48khzTo16khz* state); typedef struct { int32_t S_16_32[8]; int32_t S_32_24[8]; int32_t S_24_48[8]; } WebRtcSpl_State16khzTo48khz; void WebRtcSpl_Resample16khzTo48khz(const int16_t* in, int16_t* out, WebRtcSpl_State16khzTo48khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample16khzTo48khz(WebRtcSpl_State16khzTo48khz* state); typedef struct { int32_t S_48_24[8]; int32_t S_24_24[16]; int32_t S_24_16[8]; int32_t S_16_8[8]; } WebRtcSpl_State48khzTo8khz; void WebRtcSpl_Resample48khzTo8khz(const int16_t* in, int16_t* out, WebRtcSpl_State48khzTo8khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample48khzTo8khz(WebRtcSpl_State48khzTo8khz* state); typedef struct { int32_t S_8_16[8]; int32_t S_16_12[8]; int32_t S_12_24[8]; int32_t S_24_48[8]; } WebRtcSpl_State8khzTo48khz; void WebRtcSpl_Resample8khzTo48khz(const int16_t* in, int16_t* out, WebRtcSpl_State8khzTo48khz* state, int32_t* tmpmem); void WebRtcSpl_ResetResample8khzTo48khz(WebRtcSpl_State8khzTo48khz* state); /******************************************************************* * resample_by_2.c * * Includes down and up sampling by a factor of two. * ******************************************************************/ void WebRtcSpl_DownsampleBy2(const int16_t* in, size_t len, int16_t* out, int32_t* filtState); void WebRtcSpl_UpsampleBy2(const int16_t* in, size_t len, int16_t* out, int32_t* filtState); /************************************************************ * END OF RESAMPLING FUNCTIONS ************************************************************/ void WebRtcSpl_AnalysisQMF(const int16_t* in_data, size_t in_data_length, int16_t* low_band, int16_t* high_band, int32_t* filter_state1, int32_t* filter_state2); void WebRtcSpl_SynthesisQMF(const int16_t* low_band, const int16_t* high_band, size_t band_length, int16_t* out_data, int32_t* filter_state1, int32_t* filter_state2); #ifdef __cplusplus } #endif // __cplusplus #endif // COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_ // // WebRtcSpl_AddSatW16(...) // WebRtcSpl_AddSatW32(...) // // Returns the result of a saturated 16-bit, respectively 32-bit, addition of // the numbers specified by the `var1` and `var2` parameters. // // Input: // - var1 : Input variable 1 // - var2 : Input variable 2 // // Return value : Added and saturated value // // // WebRtcSpl_SubSatW16(...) // WebRtcSpl_SubSatW32(...) // // Returns the result of a saturated 16-bit, respectively 32-bit, subtraction // of the numbers specified by the `var1` and `var2` parameters. // // Input: // - var1 : Input variable 1 // - var2 : Input variable 2 // // Returned value : Subtracted and saturated value // // // WebRtcSpl_GetSizeInBits(...) // // Returns the # of bits that are needed at the most to represent the number // specified by the `value` parameter. // // Input: // - value : Input value // // Return value : Number of bits needed to represent `value` // // // WebRtcSpl_NormW32(...) // // Norm returns the # of left shifts required to 32-bit normalize the 32-bit // signed number specified by the `value` parameter. // // Input: // - value : Input value // // Return value : Number of bit shifts needed to 32-bit normalize `value` // // // WebRtcSpl_NormW16(...) // // Norm returns the # of left shifts required to 16-bit normalize the 16-bit // signed number specified by the `value` parameter. // // Input: // - value : Input value // // Return value : Number of bit shifts needed to 32-bit normalize `value` // // // WebRtcSpl_NormU32(...) // // Norm returns the # of left shifts required to 32-bit normalize the unsigned // 32-bit number specified by the `value` parameter. // // Input: // - value : Input value // // Return value : Number of bit shifts needed to 32-bit normalize `value` // // // WebRtcSpl_GetScalingSquare(...) // // Returns the # of bits required to scale the samples specified in the // `in_vector` parameter so that, if the squares of the samples are added the // # of times specified by the `times` parameter, the 32-bit addition will not // overflow (result in int32_t). // // Input: // - in_vector : Input vector to check scaling on // - in_vector_length : Samples in `in_vector` // - times : Number of additions to be performed // // Return value : Number of right bit shifts needed to avoid // overflow in the addition calculation // // // WebRtcSpl_MemSetW16(...) // // Sets all the values in the int16_t vector `vector` of length // `vector_length` to the specified value `set_value` // // Input: // - vector : Pointer to the int16_t vector // - set_value : Value specified // - vector_length : Length of vector // // // WebRtcSpl_MemSetW32(...) // // Sets all the values in the int32_t vector `vector` of length // `vector_length` to the specified value `set_value` // // Input: // - vector : Pointer to the int16_t vector // - set_value : Value specified // - vector_length : Length of vector // // // WebRtcSpl_MemCpyReversedOrder(...) // // Copies all the values from the source int16_t vector `in_vector` to a // destination int16_t vector `out_vector`. It is done in reversed order, // meaning that the first sample of `in_vector` is copied to the last sample of // the `out_vector`. The procedure continues until the last sample of // `in_vector` has been copied to the first sample of `out_vector`. This // creates a reversed vector. Used in e.g. prediction in iLBC. // // Input: // - in_vector : Pointer to the first sample in a int16_t vector // of length `length` // - vector_length : Number of elements to copy // // Output: // - out_vector : Pointer to the last sample in a int16_t vector // of length `length` // // // WebRtcSpl_CopyFromEndW16(...) // // Copies the rightmost `samples` of `in_vector` (of length `in_vector_length`) // to the vector `out_vector`. // // Input: // - in_vector : Input vector // - in_vector_length : Number of samples in `in_vector` // - samples : Number of samples to extract (from right side) // from `in_vector` // // Output: // - out_vector : Vector with the requested samples // // // WebRtcSpl_ZerosArrayW16(...) // WebRtcSpl_ZerosArrayW32(...) // // Inserts the value "zero" in all positions of a w16 and a w32 vector // respectively. // // Input: // - vector_length : Number of samples in vector // // Output: // - vector : Vector containing all zeros // // // WebRtcSpl_VectorBitShiftW16(...) // WebRtcSpl_VectorBitShiftW32(...) // // Bit shifts all the values in a vector up or downwards. Different calls for // int16_t and int32_t vectors respectively. // // Input: // - vector_length : Length of vector // - in_vector : Pointer to the vector that should be bit shifted // - right_shifts : Number of right bit shifts (negative value gives left // shifts) // // Output: // - out_vector : Pointer to the result vector (can be the same as // `in_vector`) // // // WebRtcSpl_VectorBitShiftW32ToW16(...) // // Bit shifts all the values in a int32_t vector up or downwards and // stores the result as an int16_t vector. The function will saturate the // signal if needed, before storing in the output vector. // // Input: // - vector_length : Length of vector // - in_vector : Pointer to the vector that should be bit shifted // - right_shifts : Number of right bit shifts (negative value gives left // shifts) // // Output: // - out_vector : Pointer to the result vector (can be the same as // `in_vector`) // // // WebRtcSpl_ScaleVector(...) // // Performs the vector operation: // out_vector[k] = (gain*in_vector[k])>>right_shifts // // Input: // - in_vector : Input vector // - gain : Scaling gain // - vector_length : Elements in the `in_vector` // - right_shifts : Number of right bit shifts applied // // Output: // - out_vector : Output vector (can be the same as `in_vector`) // // // WebRtcSpl_ScaleVectorWithSat(...) // // Performs the vector operation: // out_vector[k] = SATURATE( (gain*in_vector[k])>>right_shifts ) // // Input: // - in_vector : Input vector // - gain : Scaling gain // - vector_length : Elements in the `in_vector` // - right_shifts : Number of right bit shifts applied // // Output: // - out_vector : Output vector (can be the same as `in_vector`) // // // WebRtcSpl_ScaleAndAddVectors(...) // // Performs the vector operation: // out_vector[k] = (gain1*in_vector1[k])>>right_shifts1 // + (gain2*in_vector2[k])>>right_shifts2 // // Input: // - in_vector1 : Input vector 1 // - gain1 : Gain to be used for vector 1 // - right_shifts1 : Right bit shift to be used for vector 1 // - in_vector2 : Input vector 2 // - gain2 : Gain to be used for vector 2 // - right_shifts2 : Right bit shift to be used for vector 2 // - vector_length : Elements in the input vectors // // Output: // - out_vector : Output vector // // // WebRtcSpl_ReverseOrderMultArrayElements(...) // // Performs the vector operation: // out_vector[n] = (in_vector[n]*window[-n])>>right_shifts // // Input: // - in_vector : Input vector // - window : Window vector (should be reversed). The pointer // should be set to the last value in the vector // - right_shifts : Number of right bit shift to be applied after the // multiplication // - vector_length : Number of elements in `in_vector` // // Output: // - out_vector : Output vector (can be same as `in_vector`) // // // WebRtcSpl_ElementwiseVectorMult(...) // // Performs the vector operation: // out_vector[n] = (in_vector[n]*window[n])>>right_shifts // // Input: // - in_vector : Input vector // - window : Window vector. // - right_shifts : Number of right bit shift to be applied after the // multiplication // - vector_length : Number of elements in `in_vector` // // Output: // - out_vector : Output vector (can be same as `in_vector`) // // // WebRtcSpl_AddVectorsAndShift(...) // // Performs the vector operation: // out_vector[k] = (in_vector1[k] + in_vector2[k])>>right_shifts // // Input: // - in_vector1 : Input vector 1 // - in_vector2 : Input vector 2 // - right_shifts : Number of right bit shift to be applied after the // multiplication // - vector_length : Number of elements in `in_vector1` and `in_vector2` // // Output: // - out_vector : Output vector (can be same as `in_vector1`) // // // WebRtcSpl_AddAffineVectorToVector(...) // // Adds an affine transformed vector to another vector `out_vector`, i.e, // performs // out_vector[k] += (in_vector[k]*gain+add_constant)>>right_shifts // // Input: // - in_vector : Input vector // - gain : Gain value, used to multiply the in vector with // - add_constant : Constant value to add (usually 1<<(right_shifts-1), // but others can be used as well // - right_shifts : Number of right bit shifts (0-16) // - vector_length : Number of samples in `in_vector` and `out_vector` // // Output: // - out_vector : Vector with the output // // // WebRtcSpl_AffineTransformVector(...) // // Affine transforms a vector, i.e, performs // out_vector[k] = (in_vector[k]*gain+add_constant)>>right_shifts // // Input: // - in_vector : Input vector // - gain : Gain value, used to multiply the in vector with // - add_constant : Constant value to add (usually 1<<(right_shifts-1), // but others can be used as well // - right_shifts : Number of right bit shifts (0-16) // - vector_length : Number of samples in `in_vector` and `out_vector` // // Output: // - out_vector : Vector with the output // // // WebRtcSpl_IncreaseSeed(...) // // Increases the seed (and returns the new value) // // Input: // - seed : Seed for random calculation // // Output: // - seed : Updated seed value // // Return value : The new seed value // // // WebRtcSpl_RandU(...) // // Produces a uniformly distributed value in the int16_t range // // Input: // - seed : Seed for random calculation // // Output: // - seed : Updated seed value // // Return value : Uniformly distributed value in the range // [Word16_MIN...Word16_MAX] // // // WebRtcSpl_RandN(...) // // Produces a normal distributed value in the int16_t range // // Input: // - seed : Seed for random calculation // // Output: // - seed : Updated seed value // // Return value : N(0,1) value in the Q13 domain // // // WebRtcSpl_RandUArray(...) // // Produces a uniformly distributed vector with elements in the int16_t // range // // Input: // - vector_length : Samples wanted in the vector // - seed : Seed for random calculation // // Output: // - vector : Vector with the uniform values // - seed : Updated seed value // // Return value : Number of samples in vector, i.e., `vector_length` // // // WebRtcSpl_Sqrt(...) // // Returns the square root of the input value `value`. The precision of this // function is integer precision, i.e., sqrt(8) gives 2 as answer. // If `value` is a negative number then 0 is returned. // // Algorithm: // // A sixth order Taylor Series expansion is used here to compute the square // root of a number y^0.5 = (1+x)^0.5 // where // x = y-1 // = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5) // 0.5 <= x < 1 // // Input: // - value : Value to calculate sqrt of // // Return value : Result of the sqrt calculation // // // WebRtcSpl_DivU32U16(...) // // Divides a uint32_t `num` by a uint16_t `den`. // // If `den`==0, (uint32_t)0xFFFFFFFF is returned. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division (as a uint32_t), i.e., the // integer part of num/den. // // // WebRtcSpl_DivW32W16(...) // // Divides a int32_t `num` by a int16_t `den`. // // If `den`==0, (int32_t)0x7FFFFFFF is returned. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division (as a int32_t), i.e., the // integer part of num/den. // // // WebRtcSpl_DivW32W16ResW16(...) // // Divides a int32_t `num` by a int16_t `den`, assuming that the // result is less than 32768, otherwise an unpredictable result will occur. // // If `den`==0, (int16_t)0x7FFF is returned. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division (as a int16_t), i.e., the // integer part of num/den. // // // WebRtcSpl_DivResultInQ31(...) // // Divides a int32_t `num` by a int16_t `den`, assuming that the // absolute value of the denominator is larger than the numerator, otherwise // an unpredictable result will occur. // // Input: // - num : Numerator // - den : Denominator // // Return value : Result of the division in Q31. // // // WebRtcSpl_DivW32HiLow(...) // // Divides a int32_t `num` by a denominator in hi, low format. The // absolute value of the denominator has to be larger (or equal to) the // numerator. // // Input: // - num : Numerator // - den_hi : High part of denominator // - den_low : Low part of denominator // // Return value : Divided value in Q31 // // // WebRtcSpl_Energy(...) // // Calculates the energy of a vector // // Input: // - vector : Vector which the energy should be calculated on // - vector_length : Number of samples in vector // // Output: // - scale_factor : Number of left bit shifts needed to get the physical // energy value, i.e, to get the Q0 value // // Return value : Energy value in Q(-`scale_factor`) // // // WebRtcSpl_FilterAR(...) // // Performs a 32-bit AR filtering on a vector in Q12 // // Input: // - ar_coef : AR-coefficient vector (values in Q12), // ar_coef[0] must be 4096. // - ar_coef_length : Number of coefficients in `ar_coef`. // - in_vector : Vector to be filtered. // - in_vector_length : Number of samples in `in_vector`. // - filter_state : Current state (higher part) of the filter. // - filter_state_length : Length (in samples) of `filter_state`. // - filter_state_low : Current state (lower part) of the filter. // - filter_state_low_length : Length (in samples) of `filter_state_low`. // - out_vector_low_length : Maximum length (in samples) of // `out_vector_low`. // // Output: // - filter_state : Updated state (upper part) vector. // - filter_state_low : Updated state (lower part) vector. // - out_vector : Vector containing the upper part of the // filtered values. // - out_vector_low : Vector containing the lower part of the // filtered values. // // Return value : Number of samples in the `out_vector`. // // // WebRtcSpl_ComplexIFFT(...) // // Complex Inverse FFT // // Computes an inverse complex 2^`stages`-point FFT on the input vector, which // is in bit-reversed order. The original content of the vector is destroyed in // the process, since the input is overwritten by the output, normal-ordered, // FFT vector. With X as the input complex vector, y as the output complex // vector and with M = 2^`stages`, the following is computed: // // M-1 // y(k) = sum[X(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] // i=0 // // The implementations are optimized for speed, not for code size. It uses the // decimation-in-time algorithm with radix-2 butterfly technique. // // Input: // - vector : In pointer to complex vector containing 2^`stages` // real elements interleaved with 2^`stages` imaginary // elements. // [ReImReImReIm....] // The elements are in Q(-scale) domain, see more on Return // Value below. // // - stages : Number of FFT stages. Must be at least 3 and at most 10, // since the table WebRtcSpl_kSinTable1024[] is 1024 // elements long. // // - mode : This parameter gives the user to choose how the FFT // should work. // mode==0: Low-complexity and Low-accuracy mode // mode==1: High-complexity and High-accuracy mode // // Output: // - vector : Out pointer to the FFT vector (the same as input). // // Return Value : The scale value that tells the number of left bit shifts // that the elements in the `vector` should be shifted with // in order to get Q0 values, i.e. the physically correct // values. The scale parameter is always 0 or positive, // except if N>1024 (`stages`>10), which returns a scale // value of -1, indicating error. // // // WebRtcSpl_ComplexFFT(...) // // Complex FFT // // Computes a complex 2^`stages`-point FFT on the input vector, which is in // bit-reversed order. The original content of the vector is destroyed in // the process, since the input is overwritten by the output, normal-ordered, // FFT vector. With x as the input complex vector, Y as the output complex // vector and with M = 2^`stages`, the following is computed: // // M-1 // Y(k) = 1/M * sum[x(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] // i=0 // // The implementations are optimized for speed, not for code size. It uses the // decimation-in-time algorithm with radix-2 butterfly technique. // // This routine prevents overflow by scaling by 2 before each FFT stage. This is // a fixed scaling, for proper normalization - there will be log2(n) passes, so // this results in an overall factor of 1/n, distributed to maximize arithmetic // accuracy. // // Input: // - vector : In pointer to complex vector containing 2^`stages` real // elements interleaved with 2^`stages` imaginary elements. // [ReImReImReIm....] // The output is in the Q0 domain. // // - stages : Number of FFT stages. Must be at least 3 and at most 10, // since the table WebRtcSpl_kSinTable1024[] is 1024 // elements long. // // - mode : This parameter gives the user to choose how the FFT // should work. // mode==0: Low-complexity and Low-accuracy mode // mode==1: High-complexity and High-accuracy mode // // Output: // - vector : The output FFT vector is in the Q0 domain. // // Return value : The scale parameter is always 0, except if N>1024, // which returns a scale value of -1, indicating error. // // // WebRtcSpl_AnalysisQMF(...) // // Splits a 0-2*F Hz signal into two sub bands: 0-F Hz and F-2*F Hz. The // current version has F = 8000, therefore, a super-wideband audio signal is // split to lower-band 0-8 kHz and upper-band 8-16 kHz. // // Input: // - in_data : Wide band speech signal, 320 samples (10 ms) // // Input & Output: // - filter_state1 : Filter state for first All-pass filter // - filter_state2 : Filter state for second All-pass filter // // Output: // - low_band : Lower-band signal 0-8 kHz band, 160 samples (10 ms) // - high_band : Upper-band signal 8-16 kHz band (flipped in frequency // domain), 160 samples (10 ms) // // // WebRtcSpl_SynthesisQMF(...) // // Combines the two sub bands (0-F and F-2*F Hz) into a signal of 0-2*F // Hz, (current version has F = 8000 Hz). So the filter combines lower-band // (0-8 kHz) and upper-band (8-16 kHz) channels to obtain super-wideband 0-16 // kHz audio. // // Input: // - low_band : The signal with the 0-8 kHz band, 160 samples (10 ms) // - high_band : The signal with the 8-16 kHz band, 160 samples (10 ms) // // Input & Output: // - filter_state1 : Filter state for first All-pass filter // - filter_state2 : Filter state for second All-pass filter // // Output: // - out_data : Super-wideband speech signal, 0-16 kHz // // int16_t WebRtcSpl_SatW32ToW16(...) // // This function saturates a 32-bit word into a 16-bit word. // // Input: // - value32 : The value of a 32-bit word. // // Output: // - out16 : the saturated 16-bit word. // // int32_t WebRtc_MulAccumW16(...) // // This function multiply a 16-bit word by a 16-bit word, and accumulate this // value to a 32-bit integer. // // Input: // - a : The value of the first 16-bit word. // - b : The value of the second 16-bit word. // - c : The value of an 32-bit integer. // // Return Value: The value of a * b + c. //