PassengerStatistics/3rdparty/libopencv/include/opencv2/stitching/detail/warpers_inl.hpp

775 lines
21 KiB
C++
Raw Permalink Normal View History

2024-03-13 18:01:36 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_STITCHING_WARPERS_INL_HPP
#define OPENCV_STITCHING_WARPERS_INL_HPP
#include "opencv2/core.hpp"
#include "warpers.hpp" // Make your IDE see declarations
#include <limits>
//! @cond IGNORED
namespace cv {
namespace detail {
template <class P>
Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, InputArray K, InputArray R)
{
projector_.setCameraParams(K, R);
Point2f uv;
projector_.mapForward(pt.x, pt.y, uv.x, uv.y);
return uv;
}
template <class P>
Rect RotationWarperBase<P>::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray _xmap, OutputArray _ymap)
{
projector_.setCameraParams(K, R);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
_xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
_ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
Mat xmap = _xmap.getMat(), ymap = _ymap.getMat();
float x, y;
for (int v = dst_tl.y; v <= dst_br.y; ++v)
{
for (int u = dst_tl.x; u <= dst_br.x; ++u)
{
projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
}
}
return Rect(dst_tl, dst_br);
}
template <class P>
Point RotationWarperBase<P>::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
OutputArray dst)
{
UMat xmap, ymap;
Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
remap(src, dst, xmap, ymap, interp_mode, border_mode);
return dst_roi.tl();
}
template <class P>
void RotationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
Size dst_size, OutputArray dst)
{
projector_.setCameraParams(K, R);
Point src_tl, src_br;
detectResultRoi(dst_size, src_tl, src_br);
Size size = src.size();
CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height);
Mat xmap(dst_size, CV_32F);
Mat ymap(dst_size, CV_32F);
float u, v;
for (int y = 0; y < dst_size.height; ++y)
{
for (int x = 0; x < dst_size.width; ++x)
{
projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
xmap.at<float>(y, x) = u - src_tl.x;
ymap.at<float>(y, x) = v - src_tl.y;
}
}
dst.create(dst_size, src.type());
remap(src, dst, xmap, ymap, interp_mode, border_mode);
}
template <class P>
Rect RotationWarperBase<P>::warpRoi(Size src_size, InputArray K, InputArray R)
{
projector_.setCameraParams(K, R);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
}
template <class P>
void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
float tl_uf = (std::numeric_limits<float>::max)();
float tl_vf = (std::numeric_limits<float>::max)();
float br_uf = -(std::numeric_limits<float>::max)();
float br_vf = -(std::numeric_limits<float>::max)();
float u, v;
for (int y = 0; y < src_size.height; ++y)
{
for (int x = 0; x < src_size.width; ++x)
{
projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v);
br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v);
}
}
dst_tl.x = static_cast<int>(tl_uf);
dst_tl.y = static_cast<int>(tl_vf);
dst_br.x = static_cast<int>(br_uf);
dst_br.y = static_cast<int>(br_vf);
}
template <class P>
void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br)
{
float tl_uf = (std::numeric_limits<float>::max)();
float tl_vf = (std::numeric_limits<float>::max)();
float br_uf = -(std::numeric_limits<float>::max)();
float br_vf = -(std::numeric_limits<float>::max)();
float u, v;
for (float x = 0; x < src_size.width; ++x)
{
projector_.mapForward(static_cast<float>(x), 0, u, v);
tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v);
br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v);
projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v);
tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v);
br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v);
}
for (int y = 0; y < src_size.height; ++y)
{
projector_.mapForward(0, static_cast<float>(y), u, v);
tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v);
br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v);
projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v);
tl_uf = (std::min)(tl_uf, u); tl_vf = (std::min)(tl_vf, v);
br_uf = (std::max)(br_uf, u); br_vf = (std::max)(br_vf, v);
}
dst_tl.x = static_cast<int>(tl_uf);
dst_tl.y = static_cast<int>(tl_vf);
dst_br.x = static_cast<int>(br_uf);
dst_br.y = static_cast<int>(br_vf);
}
inline
void PlaneProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
x_ = t[0] + x_ / z_ * (1 - t[2]);
y_ = t[1] + y_ / z_ * (1 - t[2]);
u = scale * x_;
v = scale * y_;
}
inline
void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
{
u = u / scale - t[0];
v = v / scale - t[1];
float z;
x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]);
y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]);
z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]);
x /= z;
y /= z;
}
inline
void SphericalProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
u = scale * atan2f(x_, z_);
float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_);
v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0));
}
inline
void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float sinv = sinf(static_cast<float>(CV_PI) - v);
float x_ = sinv * sinf(u);
float y_ = cosf(static_cast<float>(CV_PI) - v);
float z_ = sinv * cosf(u);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
u = scale * atan2f(x_, z_);
v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
}
inline
void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float x_ = sinf(u);
float y_ = v;
float z_ = cosf(u);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void FisheyeProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
u = scale * v_ * cosf(u_);
v = scale * v_ * sinf(u_);
}
inline
void FisheyeProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float u_ = atan2f(v, u);
float v_ = sqrtf(u*u + v*v);
float sinv = sinf((float)CV_PI - v_);
float x_ = sinv * sinf(u_);
float y_ = cosf((float)CV_PI - v_);
float z_ = sinv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void StereographicProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
float r = sinf(v_) / (1 - cosf(v_));
u = scale * r * cos(u_);
v = scale * r * sin(u_);
}
inline
void StereographicProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float u_ = atan2f(v, u);
float r = sqrtf(u*u + v*v);
float v_ = 2 * atanf(1.f / r);
float sinv = sinf((float)CV_PI - v_);
float x_ = sinv * sinf(u_);
float y_ = cosf((float)CV_PI - v_);
float z_ = sinv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
u = scale * a * tanf(u_ / a);
v = scale * b * tanf(v_) / cosf(u_);
}
inline
void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float aatg = a * atanf(u / a);
float u_ = aatg;
float v_ = atanf(v * cosf(aatg) / b);
float cosv = cosf(v_);
float x_ = cosv * sinf(u_);
float y_ = sinf(v_);
float z_ = cosv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
u = - scale * a * tanf(u_ / a);
v = scale * b * tanf(v_) / cosf(u_);
}
inline
void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= - scale;
v /= scale;
float aatg = a * atanf(u / a);
float u_ = aatg;
float v_ = atanf(v * cosf( aatg ) / b);
float cosv = cosf(v_);
float y_ = cosv * sinf(u_);
float x_ = sinf(v_);
float z_ = cosv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void PaniniProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
float tg = a * tanf(u_ / a);
u = scale * tg;
float sinu = sinf(u_);
if ( fabs(sinu) < 1E-7 )
v = scale * b * tanf(v_);
else
v = scale * b * tg * tanf(v_) / sinu;
}
inline
void PaniniProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float lamda = a * atanf(u / a);
float u_ = lamda;
float v_;
if ( fabs(lamda) > 1E-7)
v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a)));
else
v_ = atanf(v / b);
float cosv = cosf(v_);
float x_ = cosv * sinf(u_);
float y_ = sinf(v_);
float z_ = cosv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
float tg = a * tanf(u_ / a);
u = - scale * tg;
float sinu = sinf( u_ );
if ( fabs(sinu) < 1E-7 )
v = scale * b * tanf(v_);
else
v = scale * b * tg * tanf(v_) / sinu;
}
inline
void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= - scale;
v /= scale;
float lamda = a * atanf(u / a);
float u_ = lamda;
float v_;
if ( fabs(lamda) > 1E-7)
v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a)));
else
v_ = atanf(v / b);
float cosv = cosf(v_);
float y_ = cosv * sinf(u_);
float x_ = sinf(v_);
float z_ = cosv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void MercatorProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
u = scale * u_;
v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) );
}
inline
void MercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float v_ = atanf( sinhf(v) );
float u_ = u;
float cosv = cosf(v_);
float x_ = cosv * sinf(u_);
float y_ = sinf(v_);
float z_ = cosv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v)
{
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float u_ = atan2f(x_, z_);
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
float B = cosf(v_) * sinf(u_);
u = scale / 2 * logf( (1+B) / (1-B) );
v = scale * atan2f(tanf(v_), cosf(u_));
}
inline
void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
u /= scale;
v /= scale;
float v_ = asinf( sinf(v) / coshf(u) );
float u_ = atan2f( sinhf(u), cos(v) );
float cosv = cosf(v_);
float x_ = cosv * sinf(u_);
float y_ = sinf(v_);
float z_ = cosv * cosf(u_);
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float x_ = y0_;
float y_ = x0_;
float u, v;
u = scale * atan2f(x_, z_);
v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));
u0 = -u;//v;
v0 = v;//u;
}
inline
void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
float u, v;
u = -u0;//v0;
v = v0;//u0;
u /= scale;
v /= scale;
float sinv = sinf(static_cast<float>(CV_PI) - v);
float x0_ = sinv * sinf(u);
float y0_ = cosf(static_cast<float>(CV_PI) - v);
float z_ = sinv * cosf(u);
float x_ = y0_;
float y_ = x0_;
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float x_ = y0_;
float y_ = x0_;
float u, v;
u = scale * atan2f(x_, z_);
v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
u0 = -u;//v;
v0 = v;//u;
}
inline
void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
float u, v;
u = -u0;//v0;
v = v0;//u0;
u /= scale;
v /= scale;
float x0_ = sinf(u);
float y0_ = v;
float z_ = cosf(u);
float x_ = y0_;
float y_ = x0_;
float z;
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
if (z > 0) { x /= z; y /= z; }
else x = y = -1;
}
inline
void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
float x_ = y0_;
float y_ = x0_;
x_ = t[0] + x_ / z_ * (1 - t[2]);
y_ = t[1] + y_ / z_ * (1 - t[2]);
float u,v;
u = scale * x_;
v = scale * y_;
u0 = -u;
v0 = v;
}
inline
void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
float u, v;
u = -u0;
v = v0;
u = u / scale - t[0];
v = v / scale - t[1];
float z;
x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]);
y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]);
z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]);
x /= z;
y /= z;
}
} // namespace detail
} // namespace cv
//! @endcond
#endif // OPENCV_STITCHING_WARPERS_INL_HPP