360 lines
12 KiB
C++
360 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef OPENCV_STITCHING_MOTION_ESTIMATORS_HPP
|
|
#define OPENCV_STITCHING_MOTION_ESTIMATORS_HPP
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include "matchers.hpp"
|
|
#include "util.hpp"
|
|
#include "camera.hpp"
|
|
|
|
namespace cv {
|
|
namespace detail {
|
|
|
|
//! @addtogroup stitching_rotation
|
|
//! @{
|
|
|
|
/** @brief Rotation estimator base class.
|
|
|
|
It takes features of all images, pairwise matches between all images and estimates rotations of all
|
|
cameras.
|
|
|
|
@note The coordinate system origin is implementation-dependent, but you can always normalize the
|
|
rotations in respect to the first camera, for instance. :
|
|
*/
|
|
class CV_EXPORTS Estimator
|
|
{
|
|
public:
|
|
virtual ~Estimator() {}
|
|
|
|
/** @brief Estimates camera parameters.
|
|
|
|
@param features Features of images
|
|
@param pairwise_matches Pairwise matches of images
|
|
@param cameras Estimated camera parameters
|
|
@return True in case of success, false otherwise
|
|
*/
|
|
bool operator ()(const std::vector<ImageFeatures> &features,
|
|
const std::vector<MatchesInfo> &pairwise_matches,
|
|
std::vector<CameraParams> &cameras)
|
|
{ return estimate(features, pairwise_matches, cameras); }
|
|
|
|
protected:
|
|
/** @brief This method must implement camera parameters estimation logic in order to make the wrapper
|
|
detail::Estimator::operator()_ work.
|
|
|
|
@param features Features of images
|
|
@param pairwise_matches Pairwise matches of images
|
|
@param cameras Estimated camera parameters
|
|
@return True in case of success, false otherwise
|
|
*/
|
|
virtual bool estimate(const std::vector<ImageFeatures> &features,
|
|
const std::vector<MatchesInfo> &pairwise_matches,
|
|
std::vector<CameraParams> &cameras) = 0;
|
|
};
|
|
|
|
/** @brief Homography based rotation estimator.
|
|
*/
|
|
class CV_EXPORTS HomographyBasedEstimator : public Estimator
|
|
{
|
|
public:
|
|
HomographyBasedEstimator(bool is_focals_estimated = false)
|
|
: is_focals_estimated_(is_focals_estimated) {}
|
|
|
|
private:
|
|
virtual bool estimate(const std::vector<ImageFeatures> &features,
|
|
const std::vector<MatchesInfo> &pairwise_matches,
|
|
std::vector<CameraParams> &cameras);
|
|
|
|
bool is_focals_estimated_;
|
|
};
|
|
|
|
/** @brief Affine transformation based estimator.
|
|
|
|
This estimator uses pairwise transformations estimated by matcher to estimate
|
|
final transformation for each camera.
|
|
|
|
@sa cv::detail::HomographyBasedEstimator
|
|
*/
|
|
class CV_EXPORTS AffineBasedEstimator : public Estimator
|
|
{
|
|
private:
|
|
virtual bool estimate(const std::vector<ImageFeatures> &features,
|
|
const std::vector<MatchesInfo> &pairwise_matches,
|
|
std::vector<CameraParams> &cameras);
|
|
};
|
|
|
|
/** @brief Base class for all camera parameters refinement methods.
|
|
*/
|
|
class CV_EXPORTS BundleAdjusterBase : public Estimator
|
|
{
|
|
public:
|
|
const Mat refinementMask() const { return refinement_mask_.clone(); }
|
|
void setRefinementMask(const Mat &mask)
|
|
{
|
|
CV_Assert(mask.type() == CV_8U && mask.size() == Size(3, 3));
|
|
refinement_mask_ = mask.clone();
|
|
}
|
|
|
|
double confThresh() const { return conf_thresh_; }
|
|
void setConfThresh(double conf_thresh) { conf_thresh_ = conf_thresh; }
|
|
|
|
TermCriteria termCriteria() { return term_criteria_; }
|
|
void setTermCriteria(const TermCriteria& term_criteria) { term_criteria_ = term_criteria; }
|
|
|
|
protected:
|
|
/** @brief Construct a bundle adjuster base instance.
|
|
|
|
@param num_params_per_cam Number of parameters per camera
|
|
@param num_errs_per_measurement Number of error terms (components) per match
|
|
*/
|
|
BundleAdjusterBase(int num_params_per_cam, int num_errs_per_measurement)
|
|
: num_images_(0), total_num_matches_(0),
|
|
num_params_per_cam_(num_params_per_cam),
|
|
num_errs_per_measurement_(num_errs_per_measurement),
|
|
features_(0), pairwise_matches_(0), conf_thresh_(0)
|
|
{
|
|
setRefinementMask(Mat::ones(3, 3, CV_8U));
|
|
setConfThresh(1.);
|
|
setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 1000, DBL_EPSILON));
|
|
}
|
|
|
|
// Runs bundle adjustment
|
|
virtual bool estimate(const std::vector<ImageFeatures> &features,
|
|
const std::vector<MatchesInfo> &pairwise_matches,
|
|
std::vector<CameraParams> &cameras);
|
|
|
|
/** @brief Sets initial camera parameter to refine.
|
|
|
|
@param cameras Camera parameters
|
|
*/
|
|
virtual void setUpInitialCameraParams(const std::vector<CameraParams> &cameras) = 0;
|
|
/** @brief Gets the refined camera parameters.
|
|
|
|
@param cameras Refined camera parameters
|
|
*/
|
|
virtual void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const = 0;
|
|
/** @brief Calculates error vector.
|
|
|
|
@param err Error column-vector of length total_num_matches \* num_errs_per_measurement
|
|
*/
|
|
virtual void calcError(Mat &err) = 0;
|
|
/** @brief Calculates the cost function jacobian.
|
|
|
|
@param jac Jacobian matrix of dimensions
|
|
(total_num_matches \* num_errs_per_measurement) x (num_images \* num_params_per_cam)
|
|
*/
|
|
virtual void calcJacobian(Mat &jac) = 0;
|
|
|
|
// 3x3 8U mask, where 0 means don't refine respective parameter, != 0 means refine
|
|
Mat refinement_mask_;
|
|
|
|
int num_images_;
|
|
int total_num_matches_;
|
|
|
|
int num_params_per_cam_;
|
|
int num_errs_per_measurement_;
|
|
|
|
const ImageFeatures *features_;
|
|
const MatchesInfo *pairwise_matches_;
|
|
|
|
// Threshold to filter out poorly matched image pairs
|
|
double conf_thresh_;
|
|
|
|
//Levenberg-Marquardt algorithm termination criteria
|
|
TermCriteria term_criteria_;
|
|
|
|
// Camera parameters matrix (CV_64F)
|
|
Mat cam_params_;
|
|
|
|
// Connected images pairs
|
|
std::vector<std::pair<int,int> > edges_;
|
|
};
|
|
|
|
|
|
/** @brief Stub bundle adjuster that does nothing.
|
|
*/
|
|
class CV_EXPORTS NoBundleAdjuster : public BundleAdjusterBase
|
|
{
|
|
public:
|
|
NoBundleAdjuster() : BundleAdjusterBase(0, 0) {}
|
|
|
|
private:
|
|
bool estimate(const std::vector<ImageFeatures> &, const std::vector<MatchesInfo> &,
|
|
std::vector<CameraParams> &)
|
|
{
|
|
return true;
|
|
}
|
|
void setUpInitialCameraParams(const std::vector<CameraParams> &) {}
|
|
void obtainRefinedCameraParams(std::vector<CameraParams> &) const {}
|
|
void calcError(Mat &) {}
|
|
void calcJacobian(Mat &) {}
|
|
};
|
|
|
|
|
|
/** @brief Implementation of the camera parameters refinement algorithm which minimizes sum of the reprojection
|
|
error squares
|
|
|
|
It can estimate focal length, aspect ratio, principal point.
|
|
You can affect only on them via the refinement mask.
|
|
*/
|
|
class CV_EXPORTS BundleAdjusterReproj : public BundleAdjusterBase
|
|
{
|
|
public:
|
|
BundleAdjusterReproj() : BundleAdjusterBase(7, 2) {}
|
|
|
|
private:
|
|
void setUpInitialCameraParams(const std::vector<CameraParams> &cameras);
|
|
void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const;
|
|
void calcError(Mat &err);
|
|
void calcJacobian(Mat &jac);
|
|
|
|
Mat err1_, err2_;
|
|
};
|
|
|
|
|
|
/** @brief Implementation of the camera parameters refinement algorithm which minimizes sum of the distances
|
|
between the rays passing through the camera center and a feature. :
|
|
|
|
It can estimate focal length. It ignores the refinement mask for now.
|
|
*/
|
|
class CV_EXPORTS BundleAdjusterRay : public BundleAdjusterBase
|
|
{
|
|
public:
|
|
BundleAdjusterRay() : BundleAdjusterBase(4, 3) {}
|
|
|
|
private:
|
|
void setUpInitialCameraParams(const std::vector<CameraParams> &cameras);
|
|
void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const;
|
|
void calcError(Mat &err);
|
|
void calcJacobian(Mat &jac);
|
|
|
|
Mat err1_, err2_;
|
|
};
|
|
|
|
|
|
/** @brief Bundle adjuster that expects affine transformation
|
|
represented in homogeneous coordinates in R for each camera param. Implements
|
|
camera parameters refinement algorithm which minimizes sum of the reprojection
|
|
error squares
|
|
|
|
It estimates all transformation parameters. Refinement mask is ignored.
|
|
|
|
@sa AffineBasedEstimator AffineBestOf2NearestMatcher BundleAdjusterAffinePartial
|
|
*/
|
|
class CV_EXPORTS BundleAdjusterAffine : public BundleAdjusterBase
|
|
{
|
|
public:
|
|
BundleAdjusterAffine() : BundleAdjusterBase(6, 2) {}
|
|
|
|
private:
|
|
void setUpInitialCameraParams(const std::vector<CameraParams> &cameras);
|
|
void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const;
|
|
void calcError(Mat &err);
|
|
void calcJacobian(Mat &jac);
|
|
|
|
Mat err1_, err2_;
|
|
};
|
|
|
|
|
|
/** @brief Bundle adjuster that expects affine transformation with 4 DOF
|
|
represented in homogeneous coordinates in R for each camera param. Implements
|
|
camera parameters refinement algorithm which minimizes sum of the reprojection
|
|
error squares
|
|
|
|
It estimates all transformation parameters. Refinement mask is ignored.
|
|
|
|
@sa AffineBasedEstimator AffineBestOf2NearestMatcher BundleAdjusterAffine
|
|
*/
|
|
class CV_EXPORTS BundleAdjusterAffinePartial : public BundleAdjusterBase
|
|
{
|
|
public:
|
|
BundleAdjusterAffinePartial() : BundleAdjusterBase(4, 2) {}
|
|
|
|
private:
|
|
void setUpInitialCameraParams(const std::vector<CameraParams> &cameras);
|
|
void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const;
|
|
void calcError(Mat &err);
|
|
void calcJacobian(Mat &jac);
|
|
|
|
Mat err1_, err2_;
|
|
};
|
|
|
|
|
|
enum WaveCorrectKind
|
|
{
|
|
WAVE_CORRECT_HORIZ,
|
|
WAVE_CORRECT_VERT
|
|
};
|
|
|
|
/** @brief Tries to make panorama more horizontal (or vertical).
|
|
|
|
@param rmats Camera rotation matrices.
|
|
@param kind Correction kind, see detail::WaveCorrectKind.
|
|
*/
|
|
void CV_EXPORTS waveCorrect(std::vector<Mat> &rmats, WaveCorrectKind kind);
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Auxiliary functions
|
|
|
|
// Returns matches graph representation in DOT language
|
|
String CV_EXPORTS matchesGraphAsString(std::vector<String> &pathes, std::vector<MatchesInfo> &pairwise_matches,
|
|
float conf_threshold);
|
|
|
|
std::vector<int> CV_EXPORTS leaveBiggestComponent(
|
|
std::vector<ImageFeatures> &features,
|
|
std::vector<MatchesInfo> &pairwise_matches,
|
|
float conf_threshold);
|
|
|
|
void CV_EXPORTS findMaxSpanningTree(
|
|
int num_images, const std::vector<MatchesInfo> &pairwise_matches,
|
|
Graph &span_tree, std::vector<int> ¢ers);
|
|
|
|
//! @} stitching_rotation
|
|
|
|
} // namespace detail
|
|
} // namespace cv
|
|
|
|
#endif // OPENCV_STITCHING_MOTION_ESTIMATORS_HPP
|