ZLMediaKit/src/Extension/H264Rtp.cpp

293 lines
9.8 KiB
C++
Raw Normal View History

2018-10-25 10:00:17 +08:00
/*
2020-04-04 20:30:09 +08:00
* Copyright (c) 2016 The ZLMediaKit project authors. All Rights Reserved.
2018-10-25 10:00:17 +08:00
*
* This file is part of ZLMediaKit(https://github.com/xia-chu/ZLMediaKit).
2018-10-25 10:00:17 +08:00
*
2020-04-04 20:30:09 +08:00
* Use of this source code is governed by MIT license that can be found in the
* LICENSE file in the root of the source tree. All contributing project authors
* may be found in the AUTHORS file in the root of the source tree.
2018-10-25 10:00:17 +08:00
*/
2018-10-21 21:21:14 +08:00
2019-06-28 17:37:11 +08:00
#include "H264Rtp.h"
2018-10-21 21:21:14 +08:00
2018-10-24 17:17:55 +08:00
namespace mediakit{
2018-10-21 22:24:24 +08:00
2021-02-07 18:29:48 +08:00
#if defined(_WIN32)
#pragma pack(push, 1)
#endif // defined(_WIN32)
class FuFlags {
public:
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned start_bit: 1;
unsigned end_bit: 1;
unsigned reserved: 1;
unsigned nal_type: 5;
#else
unsigned nal_type: 5;
unsigned reserved: 1;
unsigned end_bit: 1;
unsigned start_bit: 1;
#endif
} PACKED;
#if defined(_WIN32)
#pragma pack(pop)
#endif // defined(_WIN32)
2018-10-25 23:24:23 +08:00
2018-10-21 22:24:24 +08:00
H264RtpDecoder::H264RtpDecoder() {
2021-02-07 18:29:48 +08:00
_frame = obtainFrame();
2018-10-21 22:24:24 +08:00
}
2021-02-05 11:51:16 +08:00
H264Frame::Ptr H264RtpDecoder::obtainFrame() {
auto frame = FrameImp::create<H264Frame>();
frame->_prefix_size = 4;
2018-10-21 22:24:24 +08:00
return frame;
}
2018-10-23 18:39:17 +08:00
bool H264RtpDecoder::inputRtp(const RtpPacket::Ptr &rtp, bool key_pos) {
2019-12-26 09:43:44 +08:00
return decodeRtp(rtp);
2018-10-21 21:21:14 +08:00
}
2021-02-07 18:29:48 +08:00
/*
RTF3984 5.2 Common Structure of the RTP Payload Format
Table 1. Summary of NAL unit types and their payload structures
Type Packet Type name Section
---------------------------------------------------------
0 undefined -
1-23 NAL unit Single NAL unit packet per H.264 5.6
24 STAP-A Single-time aggregation packet 5.7.1
25 STAP-B Single-time aggregation packet 5.7.1
26 MTAP16 Multi-time aggregation packet 5.7.2
27 MTAP24 Multi-time aggregation packet 5.7.2
28 FU-A Fragmentation unit 5.8
29 FU-B Fragmentation unit 5.8
30-31 undefined -
*/
2021-01-31 19:19:24 +08:00
bool H264RtpDecoder::decodeRtp(const RtpPacket::Ptr &rtp) {
auto frame = rtp->getPayload();
auto length = rtp->getPayloadSize();
auto stamp = rtp->getStampMS();
auto seq = rtp->getSeq();
2021-02-07 18:29:48 +08:00
auto nal_type = *frame & 0x1F;
auto nal_suffix = *frame & (~0x1F);
2018-10-21 21:21:14 +08:00
2020-07-26 19:56:39 +08:00
if (nal_type >= 0 && nal_type < 24) {
2018-10-21 21:21:14 +08:00
//a full frame
2021-02-07 18:29:48 +08:00
_frame->_buffer.assign("\x00\x00\x00\x01", 4);
_frame->_buffer.append((char *) frame, length);
_frame->_pts = stamp;
auto key = _frame->keyFrame();
onGetH264(_frame);
return (key); //i frame
2018-10-21 21:21:14 +08:00
}
2021-02-07 18:29:48 +08:00
switch (nal_type) {
case 24: {
// 24 STAP-A 单一时间的组合包
bool haveIDR = false;
auto ptr = frame + 1;
2020-07-26 19:56:39 +08:00
while (true) {
size_t off = ptr - frame;
if (off >= length) {
break;
}
//获取当前nalu的大小
uint16_t len = *ptr++;
len <<= 8;
len |= *ptr++;
if (off + len > length) {
break;
}
2020-08-01 10:17:09 +08:00
if (len > 0) {
//有有效数据
2021-02-07 18:29:48 +08:00
_frame->_buffer.assign("\x00\x00\x00\x01", 4);
_frame->_buffer.append((char *) ptr, len);
_frame->_pts = stamp;
2020-07-26 19:56:39 +08:00
if ((ptr[0] & 0x1F) == H264Frame::NAL_IDR) {
haveIDR = true;
}
2021-02-07 18:29:48 +08:00
onGetH264(_frame);
}
ptr += len;
}
return haveIDR;
2018-10-21 21:21:14 +08:00
}
2021-02-07 18:29:48 +08:00
case 28: {
//FU-A
2021-02-07 18:29:48 +08:00
FuFlags *fu = (FuFlags *) (frame + 1);
if (fu->start_bit) {
2019-08-30 11:17:27 +08:00
//该帧的第一个rtp包 FU-A start
2021-02-07 18:29:48 +08:00
//预留空间,防止频繁扩容拷贝
_frame->_buffer.reserve(_max_frame_size);
_frame->_buffer.assign("\x00\x00\x00\x01", 4);
_frame->_buffer.push_back(nal_suffix | fu->nal_type);
_frame->_buffer.append((char *) frame + 2, length - 2);
_frame->_pts = stamp;
//该函数return时保存下当前sequence,以便下次对比seq是否连续
2021-02-07 18:29:48 +08:00
_last_seq = seq;
return _frame->keyFrame();
}
2021-02-07 18:29:48 +08:00
if (seq != (uint16_t) (_last_seq + 1)) {
//中间的或末尾的rtp包其seq必须连续(如果回环了则判定为连续)否则说明rtp丢包那么该帧不完整必须得丢弃
2021-02-07 18:29:48 +08:00
_frame->_buffer.clear();
WarnL << "rtp丢包: " << seq << " != " << _last_seq << " + 1,该帧被废弃";
return false;
}
2021-02-07 18:29:48 +08:00
if (!fu->end_bit) {
2019-08-30 11:17:27 +08:00
//该帧的中间rtp包 FU-A mid
2021-02-07 18:29:48 +08:00
_frame->_buffer.append((char *) frame + 2, length - 2);
//该函数return时保存下当前sequence,以便下次对比seq是否连续
2021-02-07 18:29:48 +08:00
_last_seq = seq;
return false;
}
2019-08-30 11:17:27 +08:00
//该帧最后一个rtp包 FU-A end
2021-02-07 18:29:48 +08:00
_frame->_buffer.append((char *) frame + 2, length - 2);
_frame->_pts = stamp;
//计算最大的帧
auto frame_size = _frame->size();
if (frame_size > _max_frame_size) {
_max_frame_size = frame_size;
}
onGetH264(_frame);
return false;
2018-10-21 21:21:14 +08:00
}
2020-07-26 19:56:39 +08:00
default: {
// 29 FU-B 单NAL单元B模式
// 25 STAP-B 单一时间的组合包
// 26 MTAP16 多个时间的组合包
// 27 MTAP24 多个时间的组合包
2021-01-31 19:19:24 +08:00
WarnL << "不支持的rtp类型:" << (int) nal_type << " " << seq;
return false;
2018-10-21 21:21:14 +08:00
}
}
}
2018-10-21 21:45:44 +08:00
void H264RtpDecoder::onGetH264(const H264Frame::Ptr &frame) {
2020-04-29 18:05:29 +08:00
//rtsp没有dts那么根据pts排序算法生成dts
_dts_generator.getDts(frame->_pts,frame->_dts);
RtpCodec::inputFrame(frame);
2021-02-07 18:29:48 +08:00
_frame = obtainFrame();
2018-10-21 21:21:14 +08:00
}
2018-10-21 21:45:44 +08:00
2018-10-21 22:24:24 +08:00
2018-10-21 21:45:44 +08:00
////////////////////////////////////////////////////////////////////////
2021-02-07 18:29:48 +08:00
H264RtpEncoder::H264RtpEncoder(uint32_t ssrc, uint32_t mtu, uint32_t sample_rate, uint8_t pt, uint8_t interleaved)
: RtpInfo(ssrc, mtu, sample_rate, pt, interleaved) {
2018-10-21 21:45:44 +08:00
}
2021-04-15 19:39:24 +08:00
void H264RtpEncoder::insertConfigFrame(uint32_t pts){
2021-04-15 19:46:45 +08:00
if (!_sps || !_pps) {
2021-04-15 00:15:41 +08:00
return;
}
2021-04-15 19:39:24 +08:00
//gop缓存从sps开始sps、pps后面还有时间戳相同的关键帧所以mark bit为false
2021-04-15 19:46:45 +08:00
packRtp(_sps->data() + _sps->prefixSize(), _sps->size() - _sps->prefixSize(), pts, false, true);
packRtp(_pps->data() + _pps->prefixSize(), _pps->size() - _pps->prefixSize(), pts, false, false);
2021-04-15 19:39:24 +08:00
}
2021-04-15 00:15:41 +08:00
2021-04-15 19:39:24 +08:00
void H264RtpEncoder::packRtp(const char *ptr, size_t len, uint32_t pts, bool is_mark, bool gop_pos){
if (len + 3 <= getMaxSize()) {
//STAP-A模式打包小于MTU
packRtpStapA(ptr, len, pts, is_mark, gop_pos);
} else {
//STAP-A模式打包会大于MTU,所以采用FU-A模式
packRtpFu(ptr, len, pts, is_mark, gop_pos);
2021-04-15 00:15:41 +08:00
}
2021-04-15 19:39:24 +08:00
}
2021-04-15 00:15:41 +08:00
2021-04-15 19:39:24 +08:00
void H264RtpEncoder::packRtpFu(const char *ptr, size_t len, uint32_t pts, bool is_mark, bool gop_pos){
auto packet_size = getMaxSize() - 2;
if (len <= packet_size + 1) {
//小于FU-A打包最小字节长度要求采用STAP-A模式
2021-04-15 19:39:24 +08:00
packRtpStapA(ptr, len, pts, is_mark, gop_pos);
return;
}
2021-02-07 18:29:48 +08:00
//末尾5bit为nalu type固定为28(FU-A)
auto fu_char_0 = (ptr[0] & (~0x1F)) | 28;
2021-04-15 19:39:24 +08:00
auto fu_char_1 = H264_TYPE(ptr[0]);
2021-02-07 18:29:48 +08:00
FuFlags *fu_flags = (FuFlags *) (&fu_char_1);
fu_flags->start_bit = 1;
2018-10-21 21:45:44 +08:00
2021-04-15 19:39:24 +08:00
size_t offset = 1;
while (!fu_flags->end_bit) {
if (!fu_flags->start_bit && len <= offset + packet_size) {
//FU-A end
packet_size = len - offset;
fu_flags->end_bit = 1;
2018-10-21 21:45:44 +08:00
}
2021-04-15 19:39:24 +08:00
//传入nullptr先不做payload的内存拷贝
auto rtp = makeRtp(getTrackType(), nullptr, packet_size + 2, fu_flags->end_bit && is_mark, pts);
//rtp payload 负载部分
2021-04-15 00:15:41 +08:00
uint8_t *payload = rtp->getPayload();
2021-04-15 19:39:24 +08:00
//FU-A 第1个字节
payload[0] = fu_char_0;
//FU-A 第2个字节
payload[1] = fu_char_1;
//H264 数据
memcpy(payload + 2, (uint8_t *) ptr + offset, packet_size);
//输入到rtp环形缓存
RtpCodec::inputRtp(rtp, gop_pos);
offset += packet_size;
fu_flags->start_bit = 0;
2018-10-21 21:45:44 +08:00
}
2021-04-15 19:39:24 +08:00
}
2021-04-15 19:39:24 +08:00
void H264RtpEncoder::packRtpStapA(const char *ptr, size_t len, uint32_t pts, bool is_mark, bool gop_pos){
//如果帧长度不超过mtu,为了兼容性 webrtc采用STAP-A模式打包
auto rtp = makeRtp(getTrackType(), nullptr, len + 3, is_mark, pts);
uint8_t *payload = rtp->getPayload();
//STAP-A
payload[0] = (ptr[0] & (~0x1F)) | 24;
payload[1] = (len >> 8) & 0xFF;
payload[2] = len & 0xff;
memcpy(payload + 3, (uint8_t *) ptr, len);
RtpCodec::inputRtp(rtp, gop_pos);
2018-10-21 21:45:44 +08:00
}
2021-04-15 19:39:24 +08:00
void H264RtpEncoder::inputFrame(const Frame::Ptr &frame) {
auto ptr = frame->data() + frame->prefixSize();
switch (H264_TYPE(ptr[0])) {
case H264Frame::NAL_AUD:
case H264Frame::NAL_SEI : {
return;
}
case H264Frame::NAL_SPS: {
2021-04-15 19:46:45 +08:00
_sps = Frame::getCacheAbleFrame(frame);
2021-04-15 19:39:24 +08:00
return;
}
case H264Frame::NAL_PPS: {
2021-04-15 19:46:45 +08:00
_pps = Frame::getCacheAbleFrame(frame);
2021-04-15 19:39:24 +08:00
return;
}
default: break;
}
if (_last_frame) {
//如果时间戳发生了变化那么markbit才置true
inputFrame_l(_last_frame, _last_frame->pts() != frame->pts());
}
_last_frame = Frame::getCacheAbleFrame(frame);
}
void H264RtpEncoder::inputFrame_l(const Frame::Ptr &frame, bool is_mark){
if (frame->keyFrame()) {
//保证每一个关键帧前都有SPS与PPS
insertConfigFrame(frame->pts());
}
packRtp(frame->data() + frame->prefixSize(), frame->size() - frame->prefixSize(), frame->pts(), is_mark, false);
2018-10-24 17:17:55 +08:00
}
}//namespace mediakit