qt 6.5.1 original

This commit is contained in:
kleuter
2023-10-29 23:33:08 +01:00
parent 71d22ab6b0
commit 85d238dfda
21202 changed files with 5499099 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,100 @@
# Blender v2.78 (sub 0) OBJ File: ''
# www.blender.org
mtllib block.mtl
o Cube_Cube.001
v 0.450000 -0.500000 -0.450000
v 0.450000 -0.500000 0.450000
v -0.450000 -0.500000 0.450000
v -0.450000 -0.500000 -0.450000
v -0.500000 0.450000 0.450000
v -0.500000 0.450000 -0.450000
v -0.500000 -0.450000 -0.450000
v -0.500000 -0.450000 0.450000
v -0.450000 0.500000 -0.450000
v -0.450000 0.500000 0.450000
v 0.450000 0.500000 0.450000
v 0.450000 0.500000 -0.450000
v -0.450000 0.450000 -0.500000
v 0.450000 0.450000 -0.500000
v 0.450000 -0.450000 -0.500000
v -0.450000 -0.450000 -0.500000
v 0.450000 0.450000 0.500000
v -0.450000 0.450000 0.500000
v -0.450000 -0.450000 0.500000
v 0.450000 -0.450000 0.500000
v 0.500000 -0.450000 -0.450000
v 0.500000 0.450000 -0.450000
v 0.500000 -0.450000 0.450000
v 0.500000 0.450000 0.450000
vn 0.0000 -1.0000 -0.0000
vn -1.0000 0.0000 0.0000
vn 0.0000 1.0000 0.0000
vn 0.0000 0.0000 -1.0000
vn 0.0000 -0.0000 1.0000
vn 0.5774 -0.5773 -0.5774
vn 0.5774 0.5774 -0.5774
vn 0.5774 -0.5774 0.5774
vn 0.5774 0.5773 0.5774
vn -0.5774 -0.5773 -0.5774
vn -0.5773 0.5774 -0.5774
vn -0.5774 -0.5774 0.5774
vn -0.5774 0.5773 0.5774
vn 0.7071 0.0000 -0.7071
vn 0.7071 0.7071 0.0000
vn 0.7071 -0.0000 0.7071
vn 0.7071 -0.7071 -0.0000
vn 0.0000 0.7071 0.7071
vn -0.7071 -0.0000 0.7071
vn 0.0000 -0.7071 0.7071
vn -0.7071 0.7071 0.0000
vn -0.7071 0.0000 -0.7071
vn -0.7071 -0.7071 -0.0000
vn 0.0000 0.7071 -0.7071
vn 0.0000 -0.7071 -0.7071
vn 1.0000 0.0000 0.0000
usemtl None
s 1
f 2//1 4//1 1//1
f 6//2 8//2 5//2
f 10//3 12//3 9//3
f 14//4 16//4 13//4
f 18//5 20//5 17//5
f 15//6 21//6 1//6
f 14//7 12//7 22//7
f 20//8 2//8 23//8
f 11//9 17//9 24//9
f 16//10 4//10 7//10
f 9//11 13//11 6//11
f 8//12 3//12 19//12
f 10//13 5//13 18//13
f 14//14 21//14 15//14
f 11//15 22//15 12//15
f 20//16 24//16 17//16
f 1//17 23//17 2//17
f 10//18 17//18 11//18
f 8//19 18//19 5//19
f 2//20 19//20 3//20
f 9//21 5//21 10//21
f 16//22 6//22 13//22
f 3//23 7//23 4//23
f 12//24 13//24 9//24
f 4//25 15//25 1//25
f 24//26 21//26 22//26
f 2//1 3//1 4//1
f 6//2 7//2 8//2
f 10//3 11//3 12//3
f 14//4 15//4 16//4
f 18//5 19//5 20//5
f 14//14 22//14 21//14
f 11//15 24//15 22//15
f 20//16 23//16 24//16
f 1//17 21//17 23//17
f 10//18 18//18 17//18
f 8//19 19//19 18//19
f 2//20 20//20 19//20
f 9//21 6//21 5//21
f 16//22 7//22 6//22
f 3//23 8//23 7//23
f 12//24 14//24 13//24
f 4//25 16//25 15//25
f 24//26 23//26 21//26

View File

@ -0,0 +1,10 @@
#version 440
layout(location = 0) in vec3 v_color;
layout(location = 0) out vec4 fragColor;
void main()
{
fragColor = vec4(v_color, 1.0);
}

View File

@ -0,0 +1,18 @@
#version 440
layout(location = 0) in vec4 position;
layout(location = 1) in vec3 color;
layout(location = 0) out vec3 v_color;
layout(std140, binding = 0) uniform buf {
mat4 mvp;
} ubuf;
out gl_PerVertex { vec4 gl_Position; };
void main()
{
v_color = color;
gl_Position = ubuf.mvp * position;
}

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,194 @@
// Copyright (C) 2017 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause
var fs = require('fs');
var metadata = {
vertexCount: 0,
aabb: [[null, null], [null, null], [null, null]],
emitVertex: function(v) {
++metadata.vertexCount;
var aabb = metadata.aabb;
if (aabb[0][0] === null || v[0] < aabb[0][0]) // min x
aabb[0][0] = v[0];
if (aabb[0][1] === null || v[0] > aabb[0][1]) // max x
aabb[0][1] = v[0];
if (aabb[1][0] === null || v[1] < aabb[1][0]) // min y
aabb[1][0] = v[1];
if (aabb[1][1] === null || v[1] > aabb[1][1]) // max y
aabb[1][1] = v[1];
if (aabb[2][0] === null || v[2] < aabb[2][0]) // min z
aabb[2][0] = v[2];
if (aabb[2][1] === null || v[2] > aabb[2][1]) // max z
aabb[2][1] = v[2];
},
getBuffer: function() {
var aabb = metadata.aabb;
console.log(metadata.vertexCount + " vertices");
console.log("AABB: " + aabb[0][0] + ".." + aabb[0][1]
+ ", " + aabb[1][0] + ".." + aabb[1][1]
+ ", " + aabb[2][0] + ".." + aabb[2][1]);
var buf = new Buffer((2 + 6) * 4);
var format = 1, p = 0;
buf.writeUInt32LE(format, p++);
buf.writeUInt32LE(metadata.vertexCount, p++ * 4);
for (var i = 0; i < 3; ++i) {
buf.writeFloatLE(aabb[i][0], p++ * 4);
buf.writeFloatLE(aabb[i][1], p++ * 4);
}
return buf;
}
};
function makeVec(s, n) {
var v = [];
s.split(' ').forEach(function (coordStr) {
var coord = parseFloat(coordStr);
if (!isNaN(coord))
v.push(coord);
});
if (v.length != n) {
console.error("Wrong vector size, expected " + n + ", got " + v.length);
process.exit();
}
return v;
}
function parseObj(filename, callback) {
fs.readFile(filename, "ascii", function (err, data) {
if (err)
throw err;
var groupCount = 0;
var parsed = { 'vertices': [], 'normals': [], 'texcoords': [], 'links': [] };
var missingTexCount = 0, missingNormCount = 0;
data.split('\n').forEach(function (line) {
var s = line.trim();
if (!s.length || groupCount > 1)
return;
if (s[0] === '#')
return;
if (s[0] === 'g') {
++groupCount;
} else if (s.substr(0, 2) === "v ") {
parsed.vertices.push(makeVec(s, 3));
} else if (s.substr(0, 3) === "vn ") {
parsed.normals.push(makeVec(s, 3));
} else if (s.substr(0, 3) === "vt ") {
parsed.texcoords.push(makeVec(s, 2));
} else if (s.substr(0, 2) === "f ") {
var refs = s.split(' ');
var vertCount = refs.length - 1;
if (vertCount != 3)
console.warn("Face " + parsed.links.length / 3 + " has " + vertCount + " vertices! (not triangulated?)");
for (var i = 1, ie = Math.min(4, refs.length); i < ie; ++i) {
var refComps = refs[i].split('/');
var vertIndex = parseInt(refComps[0]) - 1;
var texIndex = -1;
if (refComps.length >= 2 && refComps[1].length)
texIndex = parseInt(refComps[1]) - 1;
var normIndex = -1;
if (refComps.length >= 3 && refComps[2].length)
normIndex = parseInt(refComps[2]) - 1;
parsed.links.push([vertIndex, texIndex, normIndex]);
if (texIndex == -1)
++missingTexCount;
if (normIndex == -1)
++missingNormCount;
}
}
});
console.log(missingTexCount + " missing texture coordinates, " + missingNormCount + " missing normals");
callback(parsed);
});
}
function fillVert(src, index, dst, elemCount, isVertexCoord) {
var vertex = [];
if (index >= 0) {
for (var i = 0; i < elemCount; ++i) {
var elem = src[index][i];
if (isVertexCoord)
vertex.push(elem);
dst.buf.writeFloatLE(elem, dst.bufptr++ * 4);
}
if (vertex.length == 3)
metadata.emitVertex(vertex);
} else {
if (isVertexCoord) {
console.error("Missing vertex");
process.exit();
}
for (var i = 0; i < elemCount; ++i)
dst.buf.writeFloatLE(0, dst.bufptr++ * 4);
}
return vertex;
}
function normalize(v) {
var len = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
if (len == 0.0 || len == 1.0)
return;
len = Math.sqrt(len);
return [ v[0] / len, v[1] / len, v[2] / len ];
}
function surfaceNormal(a, b, c) {
var u = [ b[0] - a[0], b[1] - a[1], b[2] - a[2] ];
var v = [ c[0] - a[0], c[1] - a[1], c[2] - a[2] ];
var result = [ u[1] * v[2] - u[2] * v[1],
u[2] * v[0] - u[0] * v[2],
u[0] * v[1] - u[1] * v[0] ];
return normalize(result);
}
function objDataToBuf(parsed) {
var floatCount = parsed.links.length * (3 + 2 + 3);
var buf = new Buffer(floatCount * 4);
var dst = { 'buf': buf, 'bufptr': 0 };
var tri = [];
var genNormals = false;
var genNormCount = 0;
for (var i = 0; i < parsed.links.length; ++i) {
var link = parsed.links[i];
var vertIndex = link[0], texIndex = link[1], normIndex = link[2];
tri.push(fillVert(parsed.vertices, vertIndex, dst, 3, true));
fillVert(parsed.texcoords, texIndex, dst, 2);
fillVert(parsed.normals, normIndex, dst, 3);
if (normIndex == -1)
genNormals = true;
if (tri.length == 3) {
if (genNormals) {
var norm = surfaceNormal(tri[0], tri[1], tri[2]);
for (var nvIdx = 0; nvIdx < 3; ++nvIdx) {
dst.buf.writeFloatLE(norm[0], (dst.bufptr - 3 - nvIdx * 8) * 4);
dst.buf.writeFloatLE(norm[1], (dst.bufptr - 2 - nvIdx * 8) * 4);
dst.buf.writeFloatLE(norm[2], (dst.bufptr - 1 - nvIdx * 8) * 4);
}
genNormCount += 3;
}
tri = [];
}
}
if (genNormCount)
console.log("Generated " + genNormCount + " normals");
return buf;
}
var inFilename = process.argv[2];
var outFilename = process.argv[3];
if (process.argv.length < 4) {
console.log("Usage: objconvert file.obj file.buf");
process.exit();
}
parseObj(inFilename, function (parsed) {
var buf = objDataToBuf(parsed);
var f = fs.createWriteStream(outFilename);
f.on("error", function (e) { console.error(e); });
f.write(metadata.getBuffer());
f.write(buf);
f.end();
console.log("Written to " + outFilename + ", format is:");
console.log(" uint32 version, uint32 vertex_count, float32 aabb[6], vertex_count * (float32 vertex[3], float32 texcoord[2], float32 normal[3])");
});

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,466 @@
// Copyright (C) 2017 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause
#include "trianglerenderer.h"
#include <QVulkanFunctions>
#include <QFile>
// Note that the vertex data and the projection matrix assume OpenGL. With
// Vulkan Y is negated in clip space and the near/far plane is at 0/1 instead
// of -1/1. These will be corrected for by an extra transformation when
// calculating the modelview-projection matrix.
static float vertexData[] = { // Y up, front = CCW
0.0f, 0.5f, 1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, -0.5f, 0.0f, 0.0f, 1.0f
};
static const int UNIFORM_DATA_SIZE = 16 * sizeof(float);
static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign)
{
return (v + byteAlign - 1) & ~(byteAlign - 1);
}
TriangleRenderer::TriangleRenderer(QVulkanWindow *w, bool msaa)
: m_window(w)
{
if (msaa) {
const QList<int> counts = w->supportedSampleCounts();
qDebug() << "Supported sample counts:" << counts;
for (int s = 16; s >= 4; s /= 2) {
if (counts.contains(s)) {
qDebug("Requesting sample count %d", s);
m_window->setSampleCount(s);
break;
}
}
}
}
VkShaderModule TriangleRenderer::createShader(const QString &name)
{
QFile file(name);
if (!file.open(QIODevice::ReadOnly)) {
qWarning("Failed to read shader %s", qPrintable(name));
return VK_NULL_HANDLE;
}
QByteArray blob = file.readAll();
file.close();
VkShaderModuleCreateInfo shaderInfo;
memset(&shaderInfo, 0, sizeof(shaderInfo));
shaderInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderInfo.codeSize = blob.size();
shaderInfo.pCode = reinterpret_cast<const uint32_t *>(blob.constData());
VkShaderModule shaderModule;
VkResult err = m_devFuncs->vkCreateShaderModule(m_window->device(), &shaderInfo, nullptr, &shaderModule);
if (err != VK_SUCCESS) {
qWarning("Failed to create shader module: %d", err);
return VK_NULL_HANDLE;
}
return shaderModule;
}
void TriangleRenderer::initResources()
{
qDebug("initResources");
VkDevice dev = m_window->device();
m_devFuncs = m_window->vulkanInstance()->deviceFunctions(dev);
// Prepare the vertex and uniform data. The vertex data will never
// change so one buffer is sufficient regardless of the value of
// QVulkanWindow::CONCURRENT_FRAME_COUNT. Uniform data is changing per
// frame however so active frames have to have a dedicated copy.
// Use just one memory allocation and one buffer. We will then specify the
// appropriate offsets for uniform buffers in the VkDescriptorBufferInfo.
// Have to watch out for
// VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment, though.
// The uniform buffer is not strictly required in this example, we could
// have used push constants as well since our single matrix (64 bytes) fits
// into the spec mandated minimum limit of 128 bytes. However, once that
// limit is not sufficient, the per-frame buffers, as shown below, will
// become necessary.
const int concurrentFrameCount = m_window->concurrentFrameCount();
const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits;
const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment;
qDebug("uniform buffer offset alignment is %u", (uint) uniAlign);
VkBufferCreateInfo bufInfo;
memset(&bufInfo, 0, sizeof(bufInfo));
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
// Our internal layout is vertex, uniform, uniform, ... with each uniform buffer start offset aligned to uniAlign.
const VkDeviceSize vertexAllocSize = aligned(sizeof(vertexData), uniAlign);
const VkDeviceSize uniformAllocSize = aligned(UNIFORM_DATA_SIZE, uniAlign);
bufInfo.size = vertexAllocSize + concurrentFrameCount * uniformAllocSize;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_buf);
if (err != VK_SUCCESS)
qFatal("Failed to create buffer: %d", err);
VkMemoryRequirements memReq;
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_buf, &memReq);
VkMemoryAllocateInfo memAllocInfo = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
nullptr,
memReq.size,
m_window->hostVisibleMemoryIndex()
};
err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem);
if (err != VK_SUCCESS)
qFatal("Failed to allocate memory: %d", err);
err = m_devFuncs->vkBindBufferMemory(dev, m_buf, m_bufMem, 0);
if (err != VK_SUCCESS)
qFatal("Failed to bind buffer memory: %d", err);
quint8 *p;
err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, memReq.size, 0, reinterpret_cast<void **>(&p));
if (err != VK_SUCCESS)
qFatal("Failed to map memory: %d", err);
memcpy(p, vertexData, sizeof(vertexData));
QMatrix4x4 ident;
memset(m_uniformBufInfo, 0, sizeof(m_uniformBufInfo));
for (int i = 0; i < concurrentFrameCount; ++i) {
const VkDeviceSize offset = vertexAllocSize + i * uniformAllocSize;
memcpy(p + offset, ident.constData(), 16 * sizeof(float));
m_uniformBufInfo[i].buffer = m_buf;
m_uniformBufInfo[i].offset = offset;
m_uniformBufInfo[i].range = uniformAllocSize;
}
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
VkVertexInputBindingDescription vertexBindingDesc = {
0, // binding
5 * sizeof(float),
VK_VERTEX_INPUT_RATE_VERTEX
};
VkVertexInputAttributeDescription vertexAttrDesc[] = {
{ // position
0, // location
0, // binding
VK_FORMAT_R32G32_SFLOAT,
0
},
{ // color
1,
0,
VK_FORMAT_R32G32B32_SFLOAT,
2 * sizeof(float)
}
};
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.pNext = nullptr;
vertexInputInfo.flags = 0;
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc;
vertexInputInfo.vertexAttributeDescriptionCount = 2;
vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;
// Set up descriptor set and its layout.
VkDescriptorPoolSize descPoolSizes = { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uint32_t(concurrentFrameCount) };
VkDescriptorPoolCreateInfo descPoolInfo;
memset(&descPoolInfo, 0, sizeof(descPoolInfo));
descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descPoolInfo.maxSets = concurrentFrameCount;
descPoolInfo.poolSizeCount = 1;
descPoolInfo.pPoolSizes = &descPoolSizes;
err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_descPool);
if (err != VK_SUCCESS)
qFatal("Failed to create descriptor pool: %d", err);
VkDescriptorSetLayoutBinding layoutBinding = {
0, // binding
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
VK_SHADER_STAGE_VERTEX_BIT,
nullptr
};
VkDescriptorSetLayoutCreateInfo descLayoutInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
nullptr,
0,
1,
&layoutBinding
};
err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_descSetLayout);
if (err != VK_SUCCESS)
qFatal("Failed to create descriptor set layout: %d", err);
for (int i = 0; i < concurrentFrameCount; ++i) {
VkDescriptorSetAllocateInfo descSetAllocInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
nullptr,
m_descPool,
1,
&m_descSetLayout
};
err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_descSet[i]);
if (err != VK_SUCCESS)
qFatal("Failed to allocate descriptor set: %d", err);
VkWriteDescriptorSet descWrite;
memset(&descWrite, 0, sizeof(descWrite));
descWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descWrite.dstSet = m_descSet[i];
descWrite.descriptorCount = 1;
descWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descWrite.pBufferInfo = &m_uniformBufInfo[i];
m_devFuncs->vkUpdateDescriptorSets(dev, 1, &descWrite, 0, nullptr);
}
// Pipeline cache
VkPipelineCacheCreateInfo pipelineCacheInfo;
memset(&pipelineCacheInfo, 0, sizeof(pipelineCacheInfo));
pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache);
if (err != VK_SUCCESS)
qFatal("Failed to create pipeline cache: %d", err);
// Pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutInfo;
memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 1;
pipelineLayoutInfo.pSetLayouts = &m_descSetLayout;
err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_pipelineLayout);
if (err != VK_SUCCESS)
qFatal("Failed to create pipeline layout: %d", err);
// Shaders
VkShaderModule vertShaderModule = createShader(QStringLiteral(":/color_vert.spv"));
VkShaderModule fragShaderModule = createShader(QStringLiteral(":/color_frag.spv"));
// Graphics pipeline
VkGraphicsPipelineCreateInfo pipelineInfo;
memset(&pipelineInfo, 0, sizeof(pipelineInfo));
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
VkPipelineShaderStageCreateInfo shaderStages[2] = {
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_VERTEX_BIT,
vertShaderModule,
"main",
nullptr
},
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_FRAGMENT_BIT,
fragShaderModule,
"main",
nullptr
}
};
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
VkPipelineInputAssemblyStateCreateInfo ia;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
pipelineInfo.pInputAssemblyState = &ia;
// The viewport and scissor will be set dynamically via vkCmdSetViewport/Scissor.
// This way the pipeline does not need to be touched when resizing the window.
VkPipelineViewportStateCreateInfo vp;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vp.viewportCount = 1;
vp.scissorCount = 1;
pipelineInfo.pViewportState = &vp;
VkPipelineRasterizationStateCreateInfo rs;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs.polygonMode = VK_POLYGON_MODE_FILL;
rs.cullMode = VK_CULL_MODE_NONE; // we want the back face as well
rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rs.lineWidth = 1.0f;
pipelineInfo.pRasterizationState = &rs;
VkPipelineMultisampleStateCreateInfo ms;
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
// Enable multisampling.
ms.rasterizationSamples = m_window->sampleCountFlagBits();
pipelineInfo.pMultisampleState = &ms;
VkPipelineDepthStencilStateCreateInfo ds;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
pipelineInfo.pDepthStencilState = &ds;
VkPipelineColorBlendStateCreateInfo cb;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
// no blend, write out all of rgba
VkPipelineColorBlendAttachmentState att;
memset(&att, 0, sizeof(att));
att.colorWriteMask = 0xF;
cb.attachmentCount = 1;
cb.pAttachments = &att;
pipelineInfo.pColorBlendState = &cb;
VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dyn;
memset(&dyn, 0, sizeof(dyn));
dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
dyn.pDynamicStates = dynEnable;
pipelineInfo.pDynamicState = &dyn;
pipelineInfo.layout = m_pipelineLayout;
pipelineInfo.renderPass = m_window->defaultRenderPass();
err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_pipeline);
if (err != VK_SUCCESS)
qFatal("Failed to create graphics pipeline: %d", err);
if (vertShaderModule)
m_devFuncs->vkDestroyShaderModule(dev, vertShaderModule, nullptr);
if (fragShaderModule)
m_devFuncs->vkDestroyShaderModule(dev, fragShaderModule, nullptr);
}
void TriangleRenderer::initSwapChainResources()
{
qDebug("initSwapChainResources");
// Projection matrix
m_proj = m_window->clipCorrectionMatrix(); // adjust for Vulkan-OpenGL clip space differences
const QSize sz = m_window->swapChainImageSize();
m_proj.perspective(45.0f, sz.width() / (float) sz.height(), 0.01f, 100.0f);
m_proj.translate(0, 0, -4);
}
void TriangleRenderer::releaseSwapChainResources()
{
qDebug("releaseSwapChainResources");
}
void TriangleRenderer::releaseResources()
{
qDebug("releaseResources");
VkDevice dev = m_window->device();
if (m_pipeline) {
m_devFuncs->vkDestroyPipeline(dev, m_pipeline, nullptr);
m_pipeline = VK_NULL_HANDLE;
}
if (m_pipelineLayout) {
m_devFuncs->vkDestroyPipelineLayout(dev, m_pipelineLayout, nullptr);
m_pipelineLayout = VK_NULL_HANDLE;
}
if (m_pipelineCache) {
m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr);
m_pipelineCache = VK_NULL_HANDLE;
}
if (m_descSetLayout) {
m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_descSetLayout, nullptr);
m_descSetLayout = VK_NULL_HANDLE;
}
if (m_descPool) {
m_devFuncs->vkDestroyDescriptorPool(dev, m_descPool, nullptr);
m_descPool = VK_NULL_HANDLE;
}
if (m_buf) {
m_devFuncs->vkDestroyBuffer(dev, m_buf, nullptr);
m_buf = VK_NULL_HANDLE;
}
if (m_bufMem) {
m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr);
m_bufMem = VK_NULL_HANDLE;
}
}
void TriangleRenderer::startNextFrame()
{
VkDevice dev = m_window->device();
VkCommandBuffer cb = m_window->currentCommandBuffer();
const QSize sz = m_window->swapChainImageSize();
VkClearColorValue clearColor = {{ 0, 0, 0, 1 }};
VkClearDepthStencilValue clearDS = { 1, 0 };
VkClearValue clearValues[3];
memset(clearValues, 0, sizeof(clearValues));
clearValues[0].color = clearValues[2].color = clearColor;
clearValues[1].depthStencil = clearDS;
VkRenderPassBeginInfo rpBeginInfo;
memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpBeginInfo.renderPass = m_window->defaultRenderPass();
rpBeginInfo.framebuffer = m_window->currentFramebuffer();
rpBeginInfo.renderArea.extent.width = sz.width();
rpBeginInfo.renderArea.extent.height = sz.height();
rpBeginInfo.clearValueCount = m_window->sampleCountFlagBits() > VK_SAMPLE_COUNT_1_BIT ? 3 : 2;
rpBeginInfo.pClearValues = clearValues;
VkCommandBuffer cmdBuf = m_window->currentCommandBuffer();
m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
quint8 *p;
VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem, m_uniformBufInfo[m_window->currentFrame()].offset,
UNIFORM_DATA_SIZE, 0, reinterpret_cast<void **>(&p));
if (err != VK_SUCCESS)
qFatal("Failed to map memory: %d", err);
QMatrix4x4 m = m_proj;
m.rotate(m_rotation, 0, 1, 0);
memcpy(p, m.constData(), 16 * sizeof(float));
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
// Not exactly a real animation system, just advance on every frame for now.
m_rotation += 1.0f;
m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline);
m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1,
&m_descSet[m_window->currentFrame()], 0, nullptr);
VkDeviceSize vbOffset = 0;
m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_buf, &vbOffset);
VkViewport viewport;
viewport.x = viewport.y = 0;
viewport.width = sz.width();
viewport.height = sz.height();
viewport.minDepth = 0;
viewport.maxDepth = 1;
m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport);
VkRect2D scissor;
scissor.offset.x = scissor.offset.y = 0;
scissor.extent.width = viewport.width;
scissor.extent.height = viewport.height;
m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor);
m_devFuncs->vkCmdDraw(cb, 3, 1, 0, 0);
m_devFuncs->vkCmdEndRenderPass(cmdBuf);
m_window->frameReady();
m_window->requestUpdate(); // render continuously, throttled by the presentation rate
}

View File

@ -0,0 +1,43 @@
// Copyright (C) 2017 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause
#ifndef TRIANGLERENDERER_H
#define TRIANGLERENDERER_H
#include <QVulkanWindow>
class TriangleRenderer : public QVulkanWindowRenderer
{
public:
TriangleRenderer(QVulkanWindow *w, bool msaa = false);
void initResources() override;
void initSwapChainResources() override;
void releaseSwapChainResources() override;
void releaseResources() override;
void startNextFrame() override;
protected:
VkShaderModule createShader(const QString &name);
QVulkanWindow *m_window;
QVulkanDeviceFunctions *m_devFuncs;
VkDeviceMemory m_bufMem = VK_NULL_HANDLE;
VkBuffer m_buf = VK_NULL_HANDLE;
VkDescriptorBufferInfo m_uniformBufInfo[QVulkanWindow::MAX_CONCURRENT_FRAME_COUNT];
VkDescriptorPool m_descPool = VK_NULL_HANDLE;
VkDescriptorSetLayout m_descSetLayout = VK_NULL_HANDLE;
VkDescriptorSet m_descSet[QVulkanWindow::MAX_CONCURRENT_FRAME_COUNT];
VkPipelineCache m_pipelineCache = VK_NULL_HANDLE;
VkPipelineLayout m_pipelineLayout = VK_NULL_HANDLE;
VkPipeline m_pipeline = VK_NULL_HANDLE;
QMatrix4x4 m_proj;
float m_rotation = 0.0f;
};
#endif // TRIANGLERENDERER_H