mirror of
https://github.com/crystalidea/qt6windows7.git
synced 2025-01-24 04:44:31 +08:00
467 lines
17 KiB
C++
467 lines
17 KiB
C++
// Copyright (C) 2017 The Qt Company Ltd.
|
|
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause
|
|
|
|
#include "trianglerenderer.h"
|
|
#include <QVulkanFunctions>
|
|
#include <QFile>
|
|
|
|
// Note that the vertex data and the projection matrix assume OpenGL. With
|
|
// Vulkan Y is negated in clip space and the near/far plane is at 0/1 instead
|
|
// of -1/1. These will be corrected for by an extra transformation when
|
|
// calculating the modelview-projection matrix.
|
|
static float vertexData[] = { // Y up, front = CCW
|
|
0.0f, 0.5f, 1.0f, 0.0f, 0.0f,
|
|
-0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
|
|
0.5f, -0.5f, 0.0f, 0.0f, 1.0f
|
|
};
|
|
|
|
static const int UNIFORM_DATA_SIZE = 16 * sizeof(float);
|
|
|
|
static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign)
|
|
{
|
|
return (v + byteAlign - 1) & ~(byteAlign - 1);
|
|
}
|
|
|
|
TriangleRenderer::TriangleRenderer(QVulkanWindow *w, bool msaa)
|
|
: m_window(w)
|
|
{
|
|
if (msaa) {
|
|
const QList<int> counts = w->supportedSampleCounts();
|
|
qDebug() << "Supported sample counts:" << counts;
|
|
for (int s = 16; s >= 4; s /= 2) {
|
|
if (counts.contains(s)) {
|
|
qDebug("Requesting sample count %d", s);
|
|
m_window->setSampleCount(s);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VkShaderModule TriangleRenderer::createShader(const QString &name)
|
|
{
|
|
QFile file(name);
|
|
if (!file.open(QIODevice::ReadOnly)) {
|
|
qWarning("Failed to read shader %s", qPrintable(name));
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
QByteArray blob = file.readAll();
|
|
file.close();
|
|
|
|
VkShaderModuleCreateInfo shaderInfo;
|
|
memset(&shaderInfo, 0, sizeof(shaderInfo));
|
|
shaderInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
|
shaderInfo.codeSize = blob.size();
|
|
shaderInfo.pCode = reinterpret_cast<const uint32_t *>(blob.constData());
|
|
VkShaderModule shaderModule;
|
|
VkResult err = m_devFuncs->vkCreateShaderModule(m_window->device(), &shaderInfo, nullptr, &shaderModule);
|
|
if (err != VK_SUCCESS) {
|
|
qWarning("Failed to create shader module: %d", err);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
return shaderModule;
|
|
}
|
|
|
|
void TriangleRenderer::initResources()
|
|
{
|
|
qDebug("initResources");
|
|
|
|
VkDevice dev = m_window->device();
|
|
m_devFuncs = m_window->vulkanInstance()->deviceFunctions(dev);
|
|
|
|
// Prepare the vertex and uniform data. The vertex data will never
|
|
// change so one buffer is sufficient regardless of the value of
|
|
// QVulkanWindow::CONCURRENT_FRAME_COUNT. Uniform data is changing per
|
|
// frame however so active frames have to have a dedicated copy.
|
|
|
|
// Use just one memory allocation and one buffer. We will then specify the
|
|
// appropriate offsets for uniform buffers in the VkDescriptorBufferInfo.
|
|
// Have to watch out for
|
|
// VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment, though.
|
|
|
|
// The uniform buffer is not strictly required in this example, we could
|
|
// have used push constants as well since our single matrix (64 bytes) fits
|
|
// into the spec mandated minimum limit of 128 bytes. However, once that
|
|
// limit is not sufficient, the per-frame buffers, as shown below, will
|
|
// become necessary.
|
|
|
|
const int concurrentFrameCount = m_window->concurrentFrameCount();
|
|
const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits;
|
|
const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment;
|
|
qDebug("uniform buffer offset alignment is %u", (uint) uniAlign);
|
|
VkBufferCreateInfo bufInfo;
|
|
memset(&bufInfo, 0, sizeof(bufInfo));
|
|
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
// Our internal layout is vertex, uniform, uniform, ... with each uniform buffer start offset aligned to uniAlign.
|
|
const VkDeviceSize vertexAllocSize = aligned(sizeof(vertexData), uniAlign);
|
|
const VkDeviceSize uniformAllocSize = aligned(UNIFORM_DATA_SIZE, uniAlign);
|
|
bufInfo.size = vertexAllocSize + concurrentFrameCount * uniformAllocSize;
|
|
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
|
|
|
|
VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_buf);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create buffer: %d", err);
|
|
|
|
VkMemoryRequirements memReq;
|
|
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_buf, &memReq);
|
|
|
|
VkMemoryAllocateInfo memAllocInfo = {
|
|
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
|
|
nullptr,
|
|
memReq.size,
|
|
m_window->hostVisibleMemoryIndex()
|
|
};
|
|
|
|
err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to allocate memory: %d", err);
|
|
|
|
err = m_devFuncs->vkBindBufferMemory(dev, m_buf, m_bufMem, 0);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to bind buffer memory: %d", err);
|
|
|
|
quint8 *p;
|
|
err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, memReq.size, 0, reinterpret_cast<void **>(&p));
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to map memory: %d", err);
|
|
memcpy(p, vertexData, sizeof(vertexData));
|
|
QMatrix4x4 ident;
|
|
memset(m_uniformBufInfo, 0, sizeof(m_uniformBufInfo));
|
|
for (int i = 0; i < concurrentFrameCount; ++i) {
|
|
const VkDeviceSize offset = vertexAllocSize + i * uniformAllocSize;
|
|
memcpy(p + offset, ident.constData(), 16 * sizeof(float));
|
|
m_uniformBufInfo[i].buffer = m_buf;
|
|
m_uniformBufInfo[i].offset = offset;
|
|
m_uniformBufInfo[i].range = uniformAllocSize;
|
|
}
|
|
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
|
|
|
|
VkVertexInputBindingDescription vertexBindingDesc = {
|
|
0, // binding
|
|
5 * sizeof(float),
|
|
VK_VERTEX_INPUT_RATE_VERTEX
|
|
};
|
|
VkVertexInputAttributeDescription vertexAttrDesc[] = {
|
|
{ // position
|
|
0, // location
|
|
0, // binding
|
|
VK_FORMAT_R32G32_SFLOAT,
|
|
0
|
|
},
|
|
{ // color
|
|
1,
|
|
0,
|
|
VK_FORMAT_R32G32B32_SFLOAT,
|
|
2 * sizeof(float)
|
|
}
|
|
};
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
|
|
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertexInputInfo.pNext = nullptr;
|
|
vertexInputInfo.flags = 0;
|
|
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
|
vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc;
|
|
vertexInputInfo.vertexAttributeDescriptionCount = 2;
|
|
vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;
|
|
|
|
// Set up descriptor set and its layout.
|
|
VkDescriptorPoolSize descPoolSizes = { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uint32_t(concurrentFrameCount) };
|
|
VkDescriptorPoolCreateInfo descPoolInfo;
|
|
memset(&descPoolInfo, 0, sizeof(descPoolInfo));
|
|
descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
descPoolInfo.maxSets = concurrentFrameCount;
|
|
descPoolInfo.poolSizeCount = 1;
|
|
descPoolInfo.pPoolSizes = &descPoolSizes;
|
|
err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_descPool);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create descriptor pool: %d", err);
|
|
|
|
VkDescriptorSetLayoutBinding layoutBinding = {
|
|
0, // binding
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
1,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
nullptr
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descLayoutInfo = {
|
|
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
1,
|
|
&layoutBinding
|
|
};
|
|
err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_descSetLayout);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create descriptor set layout: %d", err);
|
|
|
|
for (int i = 0; i < concurrentFrameCount; ++i) {
|
|
VkDescriptorSetAllocateInfo descSetAllocInfo = {
|
|
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
|
|
nullptr,
|
|
m_descPool,
|
|
1,
|
|
&m_descSetLayout
|
|
};
|
|
err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_descSet[i]);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to allocate descriptor set: %d", err);
|
|
|
|
VkWriteDescriptorSet descWrite;
|
|
memset(&descWrite, 0, sizeof(descWrite));
|
|
descWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
descWrite.dstSet = m_descSet[i];
|
|
descWrite.descriptorCount = 1;
|
|
descWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
descWrite.pBufferInfo = &m_uniformBufInfo[i];
|
|
m_devFuncs->vkUpdateDescriptorSets(dev, 1, &descWrite, 0, nullptr);
|
|
}
|
|
|
|
// Pipeline cache
|
|
VkPipelineCacheCreateInfo pipelineCacheInfo;
|
|
memset(&pipelineCacheInfo, 0, sizeof(pipelineCacheInfo));
|
|
pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
|
|
err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create pipeline cache: %d", err);
|
|
|
|
// Pipeline layout
|
|
VkPipelineLayoutCreateInfo pipelineLayoutInfo;
|
|
memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
|
|
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pipelineLayoutInfo.setLayoutCount = 1;
|
|
pipelineLayoutInfo.pSetLayouts = &m_descSetLayout;
|
|
err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_pipelineLayout);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create pipeline layout: %d", err);
|
|
|
|
// Shaders
|
|
VkShaderModule vertShaderModule = createShader(QStringLiteral(":/color_vert.spv"));
|
|
VkShaderModule fragShaderModule = createShader(QStringLiteral(":/color_frag.spv"));
|
|
|
|
// Graphics pipeline
|
|
VkGraphicsPipelineCreateInfo pipelineInfo;
|
|
memset(&pipelineInfo, 0, sizeof(pipelineInfo));
|
|
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
|
|
VkPipelineShaderStageCreateInfo shaderStages[2] = {
|
|
{
|
|
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
vertShaderModule,
|
|
"main",
|
|
nullptr
|
|
},
|
|
{
|
|
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
fragShaderModule,
|
|
"main",
|
|
nullptr
|
|
}
|
|
};
|
|
pipelineInfo.stageCount = 2;
|
|
pipelineInfo.pStages = shaderStages;
|
|
|
|
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo ia;
|
|
memset(&ia, 0, sizeof(ia));
|
|
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
|
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
|
pipelineInfo.pInputAssemblyState = &ia;
|
|
|
|
// The viewport and scissor will be set dynamically via vkCmdSetViewport/Scissor.
|
|
// This way the pipeline does not need to be touched when resizing the window.
|
|
VkPipelineViewportStateCreateInfo vp;
|
|
memset(&vp, 0, sizeof(vp));
|
|
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
vp.viewportCount = 1;
|
|
vp.scissorCount = 1;
|
|
pipelineInfo.pViewportState = &vp;
|
|
|
|
VkPipelineRasterizationStateCreateInfo rs;
|
|
memset(&rs, 0, sizeof(rs));
|
|
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
rs.polygonMode = VK_POLYGON_MODE_FILL;
|
|
rs.cullMode = VK_CULL_MODE_NONE; // we want the back face as well
|
|
rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
|
rs.lineWidth = 1.0f;
|
|
pipelineInfo.pRasterizationState = &rs;
|
|
|
|
VkPipelineMultisampleStateCreateInfo ms;
|
|
memset(&ms, 0, sizeof(ms));
|
|
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
// Enable multisampling.
|
|
ms.rasterizationSamples = m_window->sampleCountFlagBits();
|
|
pipelineInfo.pMultisampleState = &ms;
|
|
|
|
VkPipelineDepthStencilStateCreateInfo ds;
|
|
memset(&ds, 0, sizeof(ds));
|
|
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
|
ds.depthTestEnable = VK_TRUE;
|
|
ds.depthWriteEnable = VK_TRUE;
|
|
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
|
|
pipelineInfo.pDepthStencilState = &ds;
|
|
|
|
VkPipelineColorBlendStateCreateInfo cb;
|
|
memset(&cb, 0, sizeof(cb));
|
|
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
// no blend, write out all of rgba
|
|
VkPipelineColorBlendAttachmentState att;
|
|
memset(&att, 0, sizeof(att));
|
|
att.colorWriteMask = 0xF;
|
|
cb.attachmentCount = 1;
|
|
cb.pAttachments = &att;
|
|
pipelineInfo.pColorBlendState = &cb;
|
|
|
|
VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dyn;
|
|
memset(&dyn, 0, sizeof(dyn));
|
|
dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
|
|
dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
|
|
dyn.pDynamicStates = dynEnable;
|
|
pipelineInfo.pDynamicState = &dyn;
|
|
|
|
pipelineInfo.layout = m_pipelineLayout;
|
|
pipelineInfo.renderPass = m_window->defaultRenderPass();
|
|
|
|
err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_pipeline);
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to create graphics pipeline: %d", err);
|
|
|
|
if (vertShaderModule)
|
|
m_devFuncs->vkDestroyShaderModule(dev, vertShaderModule, nullptr);
|
|
if (fragShaderModule)
|
|
m_devFuncs->vkDestroyShaderModule(dev, fragShaderModule, nullptr);
|
|
}
|
|
|
|
void TriangleRenderer::initSwapChainResources()
|
|
{
|
|
qDebug("initSwapChainResources");
|
|
|
|
// Projection matrix
|
|
m_proj = m_window->clipCorrectionMatrix(); // adjust for Vulkan-OpenGL clip space differences
|
|
const QSize sz = m_window->swapChainImageSize();
|
|
m_proj.perspective(45.0f, sz.width() / (float) sz.height(), 0.01f, 100.0f);
|
|
m_proj.translate(0, 0, -4);
|
|
}
|
|
|
|
void TriangleRenderer::releaseSwapChainResources()
|
|
{
|
|
qDebug("releaseSwapChainResources");
|
|
}
|
|
|
|
void TriangleRenderer::releaseResources()
|
|
{
|
|
qDebug("releaseResources");
|
|
|
|
VkDevice dev = m_window->device();
|
|
|
|
if (m_pipeline) {
|
|
m_devFuncs->vkDestroyPipeline(dev, m_pipeline, nullptr);
|
|
m_pipeline = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_pipelineLayout) {
|
|
m_devFuncs->vkDestroyPipelineLayout(dev, m_pipelineLayout, nullptr);
|
|
m_pipelineLayout = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_pipelineCache) {
|
|
m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr);
|
|
m_pipelineCache = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_descSetLayout) {
|
|
m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_descSetLayout, nullptr);
|
|
m_descSetLayout = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_descPool) {
|
|
m_devFuncs->vkDestroyDescriptorPool(dev, m_descPool, nullptr);
|
|
m_descPool = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_buf) {
|
|
m_devFuncs->vkDestroyBuffer(dev, m_buf, nullptr);
|
|
m_buf = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_bufMem) {
|
|
m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr);
|
|
m_bufMem = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void TriangleRenderer::startNextFrame()
|
|
{
|
|
VkDevice dev = m_window->device();
|
|
VkCommandBuffer cb = m_window->currentCommandBuffer();
|
|
const QSize sz = m_window->swapChainImageSize();
|
|
|
|
VkClearColorValue clearColor = {{ 0, 0, 0, 1 }};
|
|
VkClearDepthStencilValue clearDS = { 1, 0 };
|
|
VkClearValue clearValues[3];
|
|
memset(clearValues, 0, sizeof(clearValues));
|
|
clearValues[0].color = clearValues[2].color = clearColor;
|
|
clearValues[1].depthStencil = clearDS;
|
|
|
|
VkRenderPassBeginInfo rpBeginInfo;
|
|
memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
|
|
rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
rpBeginInfo.renderPass = m_window->defaultRenderPass();
|
|
rpBeginInfo.framebuffer = m_window->currentFramebuffer();
|
|
rpBeginInfo.renderArea.extent.width = sz.width();
|
|
rpBeginInfo.renderArea.extent.height = sz.height();
|
|
rpBeginInfo.clearValueCount = m_window->sampleCountFlagBits() > VK_SAMPLE_COUNT_1_BIT ? 3 : 2;
|
|
rpBeginInfo.pClearValues = clearValues;
|
|
VkCommandBuffer cmdBuf = m_window->currentCommandBuffer();
|
|
m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
quint8 *p;
|
|
VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem, m_uniformBufInfo[m_window->currentFrame()].offset,
|
|
UNIFORM_DATA_SIZE, 0, reinterpret_cast<void **>(&p));
|
|
if (err != VK_SUCCESS)
|
|
qFatal("Failed to map memory: %d", err);
|
|
QMatrix4x4 m = m_proj;
|
|
m.rotate(m_rotation, 0, 1, 0);
|
|
memcpy(p, m.constData(), 16 * sizeof(float));
|
|
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
|
|
|
|
// Not exactly a real animation system, just advance on every frame for now.
|
|
m_rotation += 1.0f;
|
|
|
|
m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline);
|
|
m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1,
|
|
&m_descSet[m_window->currentFrame()], 0, nullptr);
|
|
VkDeviceSize vbOffset = 0;
|
|
m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_buf, &vbOffset);
|
|
|
|
VkViewport viewport;
|
|
viewport.x = viewport.y = 0;
|
|
viewport.width = sz.width();
|
|
viewport.height = sz.height();
|
|
viewport.minDepth = 0;
|
|
viewport.maxDepth = 1;
|
|
m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport);
|
|
|
|
VkRect2D scissor;
|
|
scissor.offset.x = scissor.offset.y = 0;
|
|
scissor.extent.width = viewport.width;
|
|
scissor.extent.height = viewport.height;
|
|
m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor);
|
|
|
|
m_devFuncs->vkCmdDraw(cb, 3, 1, 0, 0);
|
|
|
|
m_devFuncs->vkCmdEndRenderPass(cmdBuf);
|
|
|
|
m_window->frameReady();
|
|
m_window->requestUpdate(); // render continuously, throttled by the presentation rate
|
|
}
|