add code.

This commit is contained in:
amass 2024-09-07 15:42:44 +08:00
parent 5c892bec39
commit 7a2dbca39e
14 changed files with 1472 additions and 51 deletions

View File

@ -4,24 +4,34 @@ cmake_minimum_required(VERSION 3.27)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(OPENSSL_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/openssl-3.3.1)
set(OPENSSL_INCLUDE_DIR ${OPENSSL_ROOT}/include)
set(OPENSSL_LIBRARY_DIRS ${OPENSSL_ROOT}/lib)
option(CROSS_BUILD "build for arm." ON)
if(CROSS_BUILD)
set(OPENSSL_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/openssl-3.3.1)
set(OPENSSL_INCLUDE_DIR ${OPENSSL_ROOT}/include)
set(OPENSSL_LIBRARY_DIRS ${OPENSSL_ROOT}/lib)
set(ALSA_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/libalsa-1.1.5)
set(ALSA_INCLUDE_DIR ${ALSA_ROOT}/include)
set(ALSA_LIBRARY_DIRS ${ALSA_ROOT}/lib)
set(FFMPEG_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/ffmpeg-4.1.3)
set(FFMPEG_INCLUDE_DIR ${FFMPEG_ROOT}/include)
set(FFMPEG_LIBRARY_DIRS ${FFMPEG_ROOT}/lib)
set(MPP_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/rockchip_mpp)
set(MPP_INCLUDE_DIR ${MPP_ROOT}/include)
set(MPP_LIBRARY_DIRS ${MPP_ROOT}/rk-libs)
set(KINESIS_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/amazon-kinesis-video-streams-webrtc-sdk-c)
else()
set(BOOST_ROOT /opt/Libraries/boost_1_86_0)
set(KINESIS_ROOT /opt/Libraries/amazon-kinesis-video-streams-webrtc-sdk-c)
endif()
option(Boost_USE_STATIC_LIBS OFF)
set(OPENSSL_LIBRARIES ssl crypto)
set(ALSA_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/libalsa-1.1.5)
set(ALSA_INCLUDE_DIR ${ALSA_ROOT}/include)
set(ALSA_LIBRARY_DIRS ${ALSA_ROOT}/lib)
set(FFMPEG_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/ffmpeg-4.1.3)
set(FFMPEG_INCLUDE_DIR ${FFMPEG_ROOT}/include)
set(FFMPEG_LIBRARY_DIRS ${FFMPEG_ROOT}/lib)
set(FFMPEG_LIBRARY avcodec avdevice avfilter avformat avutil postproc swresample swscale)
set(MPP_ROOT /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/rockchip_mpp)
set(MPP_INCLUDE_DIR ${MPP_ROOT}/include)
set(MPP_LIBRARY_DIRS ${MPP_ROOT}/rk-libs)
include(FetchContent)
FetchContent_Declare(Kylin

View File

@ -1,17 +1,17 @@
find_package(Boost REQUIRED COMPONENTS json)
add_executable(Record main.cpp
RkAudio.h RkAudio.cpp
$<$<BOOL:${CROSS_BUILD}>:RkAudio.h RkAudio.cpp>
OpusCodec.h OpusCodec.cpp
FFmpegResample.h FFmpegResample.cpp
EchoRecord.cpp
Player.cpp
ProcessFile.cpp
Recorder.cpp
SpeexDsp.h SpeexDsp.cpp
Utility.h Utility.cpp
WebRtcAecm.h WebRtcAecm.cpp
WebRTCPublisher.h WebRTCPublisher.cpp
$<$<BOOL:${CROSS_BUILD}>:Player.cpp>
$<$<BOOL:${CROSS_BUILD}>:EchoRecord.cpp>
$<$<BOOL:${CROSS_BUILD}>:Recorder.cpp>
)
target_include_directories(Record
@ -19,7 +19,7 @@ target_include_directories(Record
PRIVATE ${MPP_INCLUDE_DIR}
PRIVATE ${MPP_INCLUDE_DIR}/rkmedia
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/opus-1.4/include
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/amazon-kinesis-video-streams-webrtc-sdk-c/include
PRIVATE ${KINESIS_ROOT}/include
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/speexdsp-1.2.1/include
PRIVATE ${FFMPEG_INCLUDE_DIR}
# PRIVATE ${CMAKE_SOURCE_DIR}/rkap/include
@ -32,30 +32,38 @@ target_link_directories(Record
PRIVATE ${FFMPEG_LIBRARY_DIRS}
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/speexdsp-1.2.1/lib
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/opus-1.4/lib
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/amazon-kinesis-video-streams-webrtc-sdk-c/lib
PRIVATE ${KINESIS_ROOT}/lib
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/usrsctp-0.9.5.0/lib
PRIVATE /opt/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf/lib/libsrtp-2.6.0/lib
# PRIVATE ${CMAKE_SOURCE_DIR}/rkap/lib
)
if(CROSS_BUILD)
set(RK_LIBS
asound
easymedia
drm
rkaiq
rockchip_mpp
v4l2
v4lconvert
jpeg
png16
fontconfig
freetype
expat
rga
glib-2.0
pcre
RKAP_ANR
RKAP_Common
uuid
)
endif()
target_link_libraries(Record
PRIVATE VocieProcess
PRIVATE absl::optional
PRIVATE asound
PRIVATE easymedia
PRIVATE drm
PRIVATE rkaiq
PRIVATE rockchip_mpp
PRIVATE v4l2
PRIVATE v4lconvert
PRIVATE jpeg
PRIVATE png16
PRIVATE fontconfig
PRIVATE freetype
PRIVATE expat
PRIVATE rga
PRIVATE glib-2.0
PRIVATE pcre
PRIVATE opus
PRIVATE speexdsp
PRIVATE Boost::json
@ -70,12 +78,10 @@ target_link_libraries(Record
PRIVATE Universal
PRIVATE HttpProxy
PRIVATE stdc++fs
PRIVATE RKAP_ANR
PRIVATE RKAP_Common
PRIVATE uuid
PRIVATE dl
PRIVATE z
PRIVATE ${FFMPEG_LIBRARY}
${RK_LIBS}
# PRIVATE RKAP_Common
# PRIVATE RKAP_3A
)

View File

@ -10,7 +10,9 @@
#include <com/amazonaws/kinesis/video/webrtcclient/Include.h>
#include <filesystem>
#include <fstream>
#ifdef __RV1109__
#include <rkmedia/rkmedia_api.h>
#endif
void signal_handler(const boost::system::error_code &error, int signal_number) {
if (!error) {
@ -54,14 +56,17 @@ int main(int argc, char **argv) {
if (variablesMap.count("channels")) {
channels = variablesMap["channels"].as<int>();
}
#ifdef __RV1109__
auto t = std::make_shared<EchoRecordTask>();
t->setDsp(dspFromString(variablesMap["dsp"].as<std::string>()));
t->setChannels(channels);
t->setDumpEnabled(variablesMap["dump"].as<bool>());
task = std::dynamic_pointer_cast<Task>(t);
#endif
} else if (variablesMap.count("record")) {
#ifdef __RV1109__
task = std::make_shared<RecorderTask>();
#endif
} else if (variablesMap.count("play")) {
std::string path;
if (variablesMap.count("path")) {
@ -72,11 +77,12 @@ int main(int argc, char **argv) {
if (variablesMap.count("channels")) {
channels = variablesMap["channels"].as<int>();
}
#ifdef __RV1109__
auto t = std::make_shared<PlayerTask>();
t->setChannels(channels);
t->setPath(path);
task = std::dynamic_pointer_cast<Task>(t);
#endif
} else if (variablesMap.count("file")) {
auto t = std::make_shared<ProcessFileTask>();
t->setDsp(dspFromString(variablesMap["dsp"].as<std::string>()));
@ -94,7 +100,9 @@ int main(int argc, char **argv) {
try {
LOG(info) << "app start.";
#ifdef __RV1109__
RK_MPI_SYS_Init();
#endif
initKvsWebRtc();
auto ioConext = Singleton<IoContext>::instance<Construct>();
boost::asio::signal_set signals(*ioConext->ioContext(), SIGINT, SIGTERM);

View File

@ -36,33 +36,36 @@ add_library(VocieProcess
common_audio/audio_converter.h common_audio/audio_converter.cc
common_audio/audio_util.cc
common_audio/channel_buffer.h common_audio/channel_buffer.cc
common_audio/fir_filter_neon.h common_audio/fir_filter_neon.cc
$<$<BOOL:${CROSS_BUILD}>:common_audio/fir_filter_neon.h common_audio/fir_filter_neon.cc>
common_audio/ring_buffer.h common_audio/ring_buffer.c
common_audio/wav_file.h common_audio/wav_file.cc
common_audio/wav_header.h common_audio/wav_header.cc
common_audio/resampler/push_sinc_resampler.h common_audio/resampler/push_sinc_resampler.cc
common_audio/resampler/sinc_resampler.h common_audio/resampler/sinc_resampler_neon.cc
common_audio/resampler/sinc_resampler.cc
common_audio/resampler/sinc_resampler.h common_audio/resampler/sinc_resampler.cc
$<$<BOOL:${CROSS_BUILD}>:common_audio/resampler/sinc_resampler_neon.cc>
common_audio/resampler/sinc_resampler_sse.cc
common_audio/resampler/sinc_resampler_avx2.cc
common_audio/signal_processing/complex_bit_reverse.c
common_audio/signal_processing/complex_fft.c
common_audio/signal_processing/cross_correlation_neon.c
common_audio/signal_processing/cross_correlation.c
common_audio/signal_processing/division_operations.c
common_audio/signal_processing/dot_product_with_scale.h common_audio/signal_processing/dot_product_with_scale.cc
common_audio/signal_processing/downsample_fast.c
common_audio/signal_processing/downsample_fast_neon.c
$<$<BOOL:${CROSS_BUILD}>:common_audio/signal_processing/cross_correlation_neon.c>
$<$<BOOL:${CROSS_BUILD}>:common_audio/signal_processing/downsample_fast_neon.c>
$<$<BOOL:${CROSS_BUILD}>:common_audio/signal_processing/min_max_operations_neon.c>
common_audio/signal_processing/min_max_operations.c
common_audio/signal_processing/min_max_operations_neon.c
common_audio/signal_processing/randomization_functions.c
common_audio/signal_processing/real_fft.c
common_audio/signal_processing/spl_init.c
common_audio/signal_processing/splitting_filter.c
common_audio/signal_processing/vector_scaling_operations.c
common_audio/third_party/ooura/fft_size_128/ooura_fft.h common_audio/third_party/ooura/fft_size_128/ooura_fft_neon.cc
common_audio/third_party/ooura/fft_size_128/ooura_fft.cc
common_audio/third_party/ooura/fft_size_128/ooura_fft.h common_audio/third_party/ooura/fft_size_128/ooura_fft.cc
$<$<BOOL:${CROSS_BUILD}>:common_audio/third_party/ooura/fft_size_128/ooura_fft_neon.cc>
common_audio/third_party/ooura/fft_size_128/ooura_fft_sse2.cc
common_audio/third_party/ooura/fft_size_256/fft4g.h common_audio/third_party/ooura/fft_size_256/fft4g.cc
common_audio/third_party/spl_sqrt_floor/spl_sqrt_floor.h common_audio/third_party/spl_sqrt_floor/spl_sqrt_floor.c
@ -109,6 +112,8 @@ add_library(VocieProcess
modules/audio_processing/include/aec_dump.h modules/audio_processing/include/aec_dump.cc
modules/audio_processing/include/audio_frame_proxies.h modules/audio_processing/include/audio_frame_proxies.cc
modules/audio_processing/aec3/adaptive_fir_filter_avx2.cc
modules/audio_processing/aec3/adaptive_fir_filter_erl_avx2.cc
modules/audio_processing/aec3/adaptive_fir_filter_erl.h modules/audio_processing/aec3/adaptive_fir_filter_erl.cc
modules/audio_processing/aec3/adaptive_fir_filter.h modules/audio_processing/aec3/adaptive_fir_filter.cc
modules/audio_processing/aec3/aec_state.h modules/audio_processing/aec3/aec_state.cc
@ -137,9 +142,11 @@ add_library(VocieProcess
modules/audio_processing/aec3/erl_estimator.h modules/audio_processing/aec3/erl_estimator.cc
modules/audio_processing/aec3/erle_estimator.h modules/audio_processing/aec3/erle_estimator.cc
modules/audio_processing/aec3/fft_buffer.h modules/audio_processing/aec3/fft_buffer.cc
modules/audio_processing/aec3/fft_data_avx2.cc
modules/audio_processing/aec3/filter_analyzer.h modules/audio_processing/aec3/filter_analyzer.cc
modules/audio_processing/aec3/frame_blocker.h modules/audio_processing/aec3/frame_blocker.cc
modules/audio_processing/aec3/fullband_erle_estimator.h modules/audio_processing/aec3/fullband_erle_estimator.cc
modules/audio_processing/aec3/matched_filter_avx2.cc
modules/audio_processing/aec3/matched_filter_lag_aggregator.h modules/audio_processing/aec3/matched_filter_lag_aggregator.cc
modules/audio_processing/aec3/matched_filter.h modules/audio_processing/aec3/matched_filter.cc
modules/audio_processing/aec3/moving_average.h modules/audio_processing/aec3/moving_average.cc
@ -166,9 +173,10 @@ add_library(VocieProcess
modules/audio_processing/aec3/suppression_filter.h modules/audio_processing/aec3/suppression_filter.cc
modules/audio_processing/aec3/suppression_gain.h modules/audio_processing/aec3/suppression_gain.cc
modules/audio_processing/aec3/transparent_mode.h modules/audio_processing/aec3/transparent_mode.cc
modules/audio_processing/aec3/vector_math_avx2.cc
modules/audio_processing/aecm/aecm_core.h modules/audio_processing/aecm/aecm_core.cc modules/audio_processing/aecm/aecm_core_c.cc
modules/audio_processing/aecm/aecm_core_neon.cc
$<$<BOOL:${CROSS_BUILD}>:modules/audio_processing/aecm/aecm_core_neon.cc>
modules/audio_processing/aecm/echo_control_mobile.h modules/audio_processing/aecm/echo_control_mobile.cc
modules/audio_processing/capture_levels_adjuster/audio_samples_scaler.h modules/audio_processing/capture_levels_adjuster/audio_samples_scaler.cc
@ -205,18 +213,26 @@ add_library(VocieProcess
modules/third_party/fft/fft.h modules/third_party/fft/fft.c
system_wrappers/source/cpu_features_linux.cc
system_wrappers/source/cpu_features.cc
system_wrappers/source/field_trial.cc
system_wrappers/source/metrics.cc
)
if(NOT CROSS_BUILD)
target_compile_options(VocieProcess
PRIVATE -Wpsabi -mavx2 -mfma
)
endif()
target_compile_definitions(VocieProcess
PRIVATE NOMINMAX # <windows.h>
# PRIVATE RTC_DISABLE_LOGGING
# PUBLIC RTC_DISABLE_METRICS
PUBLIC WEBRTC_HAS_NEON
PUBLIC WEBRTC_APM_DEBUG_DUMP=1
$<$<PLATFORM_ID:Windows>:WEBRTC_WIN>
$<$<PLATFORM_ID:Linux>:WEBRTC_POSIX WEBRTC_LINUX>
$<$<BOOL:${CROSS_BUILD}>:WEBRTC_HAS_NEON>
)
target_include_directories(VocieProcess

View File

@ -0,0 +1,66 @@
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include <stddef.h>
#include <stdint.h>
#include <xmmintrin.h>
#include "common_audio/resampler/sinc_resampler.h"
namespace webrtc {
float SincResampler::Convolve_AVX2(const float* input_ptr,
const float* k1,
const float* k2,
double kernel_interpolation_factor) {
__m256 m_input;
__m256 m_sums1 = _mm256_setzero_ps();
__m256 m_sums2 = _mm256_setzero_ps();
// Based on `input_ptr` alignment, we need to use loadu or load. Unrolling
// these loops has not been tested or benchmarked.
bool aligned_input = (reinterpret_cast<uintptr_t>(input_ptr) & 0x1F) == 0;
if (!aligned_input) {
for (size_t i = 0; i < kKernelSize; i += 8) {
m_input = _mm256_loadu_ps(input_ptr + i);
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
}
} else {
for (size_t i = 0; i < kKernelSize; i += 8) {
m_input = _mm256_load_ps(input_ptr + i);
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
}
}
// Linearly interpolate the two "convolutions".
__m128 m128_sums1 = _mm_add_ps(_mm256_extractf128_ps(m_sums1, 0),
_mm256_extractf128_ps(m_sums1, 1));
__m128 m128_sums2 = _mm_add_ps(_mm256_extractf128_ps(m_sums2, 0),
_mm256_extractf128_ps(m_sums2, 1));
m128_sums1 = _mm_mul_ps(
m128_sums1,
_mm_set_ps1(static_cast<float>(1.0 - kernel_interpolation_factor)));
m128_sums2 = _mm_mul_ps(
m128_sums2, _mm_set_ps1(static_cast<float>(kernel_interpolation_factor)));
m128_sums1 = _mm_add_ps(m128_sums1, m128_sums2);
// Sum components together.
float result;
m128_sums2 = _mm_add_ps(_mm_movehl_ps(m128_sums1, m128_sums1), m128_sums1);
_mm_store_ss(&result, _mm_add_ss(m128_sums2,
_mm_shuffle_ps(m128_sums2, m128_sums2, 1)));
return result;
}
} // namespace webrtc

View File

@ -0,0 +1,63 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Modified from the Chromium original:
// src/media/base/simd/sinc_resampler_sse.cc
#include <stddef.h>
#include <stdint.h>
#include <xmmintrin.h>
#include "common_audio/resampler/sinc_resampler.h"
namespace webrtc {
float SincResampler::Convolve_SSE(const float* input_ptr,
const float* k1,
const float* k2,
double kernel_interpolation_factor) {
__m128 m_input;
__m128 m_sums1 = _mm_setzero_ps();
__m128 m_sums2 = _mm_setzero_ps();
// Based on `input_ptr` alignment, we need to use loadu or load. Unrolling
// these loops hurt performance in local testing.
if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
for (size_t i = 0; i < kKernelSize; i += 4) {
m_input = _mm_loadu_ps(input_ptr + i);
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
}
} else {
for (size_t i = 0; i < kKernelSize; i += 4) {
m_input = _mm_load_ps(input_ptr + i);
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
}
}
// Linearly interpolate the two "convolutions".
m_sums1 = _mm_mul_ps(
m_sums1,
_mm_set_ps1(static_cast<float>(1.0 - kernel_interpolation_factor)));
m_sums2 = _mm_mul_ps(
m_sums2, _mm_set_ps1(static_cast<float>(kernel_interpolation_factor)));
m_sums1 = _mm_add_ps(m_sums1, m_sums2);
// Sum components together.
float result;
m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
_mm_store_ss(&result,
_mm_add_ss(m_sums2, _mm_shuffle_ps(m_sums2, m_sums2, 1)));
return result;
}
} // namespace webrtc

View File

@ -0,0 +1,439 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <emmintrin.h>
#include <xmmintrin.h>
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft.h"
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft_tables_common.h"
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft_tables_neon_sse2.h"
#include "rtc_base/system/arch.h"
namespace webrtc {
#if defined(WEBRTC_ARCH_X86_FAMILY)
namespace {
// These intrinsics were unavailable before VS 2008.
// TODO(andrew): move to a common file.
#if defined(_MSC_VER) && _MSC_VER < 1500
static __inline __m128 _mm_castsi128_ps(__m128i a) {
return *(__m128*)&a;
}
static __inline __m128i _mm_castps_si128(__m128 a) {
return *(__m128i*)&a;
}
#endif
} // namespace
void cft1st_128_SSE2(float* a) {
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j, k2;
for (k2 = 0, j = 0; j < 128; j += 16, k2 += 4) {
__m128 a00v = _mm_loadu_ps(&a[j + 0]);
__m128 a04v = _mm_loadu_ps(&a[j + 4]);
__m128 a08v = _mm_loadu_ps(&a[j + 8]);
__m128 a12v = _mm_loadu_ps(&a[j + 12]);
__m128 a01v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(1, 0, 1, 0));
__m128 a23v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(3, 2, 3, 2));
__m128 a45v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(1, 0, 1, 0));
__m128 a67v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(3, 2, 3, 2));
const __m128 wk1rv = _mm_load_ps(&rdft_wk1r[k2]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2]);
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2]);
__m128 x0v = _mm_add_ps(a01v, a23v);
const __m128 x1v = _mm_sub_ps(a01v, a23v);
const __m128 x2v = _mm_add_ps(a45v, a67v);
const __m128 x3v = _mm_sub_ps(a45v, a67v);
__m128 x0w;
a01v = _mm_add_ps(x0v, x2v);
x0v = _mm_sub_ps(x0v, x2v);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0, 1));
{
const __m128 a45_0v = _mm_mul_ps(wk2rv, x0v);
const __m128 a45_1v = _mm_mul_ps(wk2iv, x0w);
a45v = _mm_add_ps(a45_0v, a45_1v);
}
{
__m128 a23_0v, a23_1v;
const __m128 x3w = _mm_shuffle_ps(x3v, x3v, _MM_SHUFFLE(2, 3, 0, 1));
const __m128 x3s = _mm_mul_ps(mm_swap_sign, x3w);
x0v = _mm_add_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0, 1));
a23_0v = _mm_mul_ps(wk1rv, x0v);
a23_1v = _mm_mul_ps(wk1iv, x0w);
a23v = _mm_add_ps(a23_0v, a23_1v);
x0v = _mm_sub_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0, 1));
}
{
const __m128 a67_0v = _mm_mul_ps(wk3rv, x0v);
const __m128 a67_1v = _mm_mul_ps(wk3iv, x0w);
a67v = _mm_add_ps(a67_0v, a67_1v);
}
a00v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(1, 0, 1, 0));
a04v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(1, 0, 1, 0));
a08v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(3, 2, 3, 2));
a12v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(3, 2, 3, 2));
_mm_storeu_ps(&a[j + 0], a00v);
_mm_storeu_ps(&a[j + 4], a04v);
_mm_storeu_ps(&a[j + 8], a08v);
_mm_storeu_ps(&a[j + 12], a12v);
}
}
void cftmdl_128_SSE2(float* a) {
const int l = 8;
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j0;
__m128 wk1rv = _mm_load_ps(cftmdl_wk1r);
for (j0 = 0; j0 < l; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 =
_mm_shuffle_ps(_mm_castsi128_ps(a_00), _mm_castsi128_ps(a_32),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_08_40 =
_mm_shuffle_ps(_mm_castsi128_ps(a_08), _mm_castsi128_ps(a_40),
_MM_SHUFFLE(1, 0, 1, 0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 =
_mm_shuffle_ps(_mm_castsi128_ps(a_16), _mm_castsi128_ps(a_48),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_24_56 =
_mm_shuffle_ps(_mm_castsi128_ps(a_24), _mm_castsi128_ps(a_56),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx0 = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 x3i0_3r0_3i1_x3r1 = _mm_castsi128_ps(_mm_shuffle_epi32(
_mm_castps_si128(x3r0_3i0_3r1_x3i1), _MM_SHUFFLE(2, 3, 0, 1)));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 yy0 =
_mm_shuffle_ps(x1_x3_add, x1_x3_sub, _MM_SHUFFLE(2, 2, 2, 2));
const __m128 yy1 =
_mm_shuffle_ps(x1_x3_add, x1_x3_sub, _MM_SHUFFLE(3, 3, 3, 3));
const __m128 yy2 = _mm_mul_ps(mm_swap_sign, yy1);
const __m128 yy3 = _mm_add_ps(yy0, yy2);
const __m128 yy4 = _mm_mul_ps(wk1rv, yy3);
_mm_storel_epi64((__m128i*)&a[j0 + 0], _mm_castps_si128(xx0));
_mm_storel_epi64(
(__m128i*)&a[j0 + 32],
_mm_shuffle_epi32(_mm_castps_si128(xx0), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 16], _mm_castps_si128(xx1));
_mm_storel_epi64(
(__m128i*)&a[j0 + 48],
_mm_shuffle_epi32(_mm_castps_si128(xx1), _MM_SHUFFLE(2, 3, 2, 3)));
a[j0 + 48] = -a[j0 + 48];
_mm_storel_epi64((__m128i*)&a[j0 + 8], _mm_castps_si128(x1_x3_add));
_mm_storel_epi64((__m128i*)&a[j0 + 24], _mm_castps_si128(x1_x3_sub));
_mm_storel_epi64((__m128i*)&a[j0 + 40], _mm_castps_si128(yy4));
_mm_storel_epi64(
(__m128i*)&a[j0 + 56],
_mm_shuffle_epi32(_mm_castps_si128(yy4), _MM_SHUFFLE(2, 3, 2, 3)));
}
{
int k = 64;
int k1 = 2;
int k2 = 2 * k1;
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2 + 0]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2 + 0]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2 + 0]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2 + 0]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2 + 0]);
wk1rv = _mm_load_ps(&rdft_wk1r[k2 + 0]);
for (j0 = k; j0 < l + k; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 =
_mm_shuffle_ps(_mm_castsi128_ps(a_00), _mm_castsi128_ps(a_32),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_08_40 =
_mm_shuffle_ps(_mm_castsi128_ps(a_08), _mm_castsi128_ps(a_40),
_MM_SHUFFLE(1, 0, 1, 0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 =
_mm_shuffle_ps(_mm_castsi128_ps(a_16), _mm_castsi128_ps(a_48),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_24_56 =
_mm_shuffle_ps(_mm_castsi128_ps(a_24), _mm_castsi128_ps(a_56),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx2 = _mm_mul_ps(xx1, wk2rv);
const __m128 xx3 = _mm_mul_ps(
wk2iv, _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xx1),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx4 = _mm_add_ps(xx2, xx3);
const __m128 x3i0_3r0_3i1_x3r1 = _mm_castsi128_ps(_mm_shuffle_epi32(
_mm_castps_si128(x3r0_3i0_3r1_x3i1), _MM_SHUFFLE(2, 3, 0, 1)));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 xx10 = _mm_mul_ps(x1_x3_add, wk1rv);
const __m128 xx11 = _mm_mul_ps(
wk1iv, _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(x1_x3_add),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx12 = _mm_add_ps(xx10, xx11);
const __m128 xx20 = _mm_mul_ps(x1_x3_sub, wk3rv);
const __m128 xx21 = _mm_mul_ps(
wk3iv, _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(x1_x3_sub),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx22 = _mm_add_ps(xx20, xx21);
_mm_storel_epi64((__m128i*)&a[j0 + 0], _mm_castps_si128(xx));
_mm_storel_epi64(
(__m128i*)&a[j0 + 32],
_mm_shuffle_epi32(_mm_castps_si128(xx), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 16], _mm_castps_si128(xx4));
_mm_storel_epi64(
(__m128i*)&a[j0 + 48],
_mm_shuffle_epi32(_mm_castps_si128(xx4), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 8], _mm_castps_si128(xx12));
_mm_storel_epi64(
(__m128i*)&a[j0 + 40],
_mm_shuffle_epi32(_mm_castps_si128(xx12), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 24], _mm_castps_si128(xx22));
_mm_storel_epi64(
(__m128i*)&a[j0 + 56],
_mm_shuffle_epi32(_mm_castps_si128(xx22), _MM_SHUFFLE(3, 2, 3, 2)));
}
}
}
void rftfsub_128_SSE2(float* a) {
const float* c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] = {0.5f, 0.5f, 0.5f,
0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(2, 0, 2, 0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(3, 1, 3, 1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(0, 2, 0, 2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(1, 3, 1, 3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr - wki * xi;
// yi = wkr * xi + wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_sub_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_add_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] -= yr;
// a[j2 + 1] -= yi;
// a[k2 + 0] += yr;
// a[k2 + 1] -= yi;
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(a_j2_p1, yi_); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(a_k2_p1, yi_); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(
a_k2_0nt, a_k2_0nt, _MM_SHUFFLE(1, 0, 3, 2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(
a_k2_4nt, a_k2_4nt, _MM_SHUFFLE(1, 0, 3, 2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr - wki * xi;
yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
void rftbsub_128_SSE2(float* a) {
const float* c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] = {0.5f, 0.5f, 0.5f,
0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
a[1] = -a[1];
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(2, 0, 2, 0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(3, 1, 3, 1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(0, 2, 0, 2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(1, 3, 1, 3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr + wki * xi;
// yi = wkr * xi - wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_add_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_sub_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] = a[j2 + 0] - yr;
// a[j2 + 1] = yi - a[j2 + 1];
// a[k2 + 0] = yr + a[k2 + 0];
// a[k2 + 1] = yi - a[k2 + 1];
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(yi_, a_j2_p1); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(yi_, a_k2_p1); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(
a_k2_0nt, a_k2_0nt, _MM_SHUFFLE(1, 0, 3, 2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(
a_k2_4nt, a_k2_4nt, _MM_SHUFFLE(1, 0, 3, 2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr + wki * xi;
yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
#endif
} // namespace webrtc

View File

@ -0,0 +1,188 @@
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "modules/audio_processing/aec3/adaptive_fir_filter.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace aec3 {
// Computes and stores the frequency response of the filter.
void ComputeFrequencyResponse_Avx2(
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2) {
for (auto& H2_ch : *H2) {
H2_ch.fill(0.f);
}
const size_t num_render_channels = H[0].size();
RTC_DCHECK_EQ(H.size(), H2->capacity());
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size());
auto& H2_p = (*H2)[p];
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
for (size_t j = 0; j < kFftLengthBy2; j += 8) {
__m256 re = _mm256_loadu_ps(&H_p_ch.re[j]);
__m256 re2 = _mm256_mul_ps(re, re);
__m256 im = _mm256_loadu_ps(&H_p_ch.im[j]);
re2 = _mm256_fmadd_ps(im, im, re2);
__m256 H2_k_j = _mm256_loadu_ps(&H2_p[j]);
H2_k_j = _mm256_max_ps(H2_k_j, re2);
_mm256_storeu_ps(&H2_p[j], H2_k_j);
}
float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] +
H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new);
}
}
}
// Adapts the filter partitions.
void AdaptPartitions_Avx2(const RenderBuffer& render_buffer,
const FftData& G,
size_t num_partitions,
std::vector<std::vector<FftData>>* H) {
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
const size_t num_render_channels = render_buffer_data[0].size();
const size_t lim1 = std::min(
render_buffer_data.size() - render_buffer.Position(), num_partitions);
const size_t lim2 = num_partitions;
constexpr size_t kNumEightBinBands = kFftLengthBy2 / 8;
size_t X_partition = render_buffer.Position();
size_t limit = lim1;
size_t p = 0;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
FftData& H_p_ch = (*H)[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
for (size_t k = 0, n = 0; n < kNumEightBinBands; ++n, k += 8) {
const __m256 G_re = _mm256_loadu_ps(&G.re[k]);
const __m256 G_im = _mm256_loadu_ps(&G.im[k]);
const __m256 X_re = _mm256_loadu_ps(&X.re[k]);
const __m256 X_im = _mm256_loadu_ps(&X.im[k]);
const __m256 H_re = _mm256_loadu_ps(&H_p_ch.re[k]);
const __m256 H_im = _mm256_loadu_ps(&H_p_ch.im[k]);
const __m256 a = _mm256_mul_ps(X_re, G_re);
const __m256 b = _mm256_mul_ps(X_im, G_im);
const __m256 c = _mm256_mul_ps(X_re, G_im);
const __m256 d = _mm256_mul_ps(X_im, G_re);
const __m256 e = _mm256_add_ps(a, b);
const __m256 f = _mm256_sub_ps(c, d);
const __m256 g = _mm256_add_ps(H_re, e);
const __m256 h = _mm256_add_ps(H_im, f);
_mm256_storeu_ps(&H_p_ch.re[k], g);
_mm256_storeu_ps(&H_p_ch.im[k], h);
}
}
}
X_partition = 0;
limit = lim2;
} while (p < lim2);
X_partition = render_buffer.Position();
limit = lim1;
p = 0;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
FftData& H_p_ch = (*H)[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
H_p_ch.re[kFftLengthBy2] += X.re[kFftLengthBy2] * G.re[kFftLengthBy2] +
X.im[kFftLengthBy2] * G.im[kFftLengthBy2];
H_p_ch.im[kFftLengthBy2] += X.re[kFftLengthBy2] * G.im[kFftLengthBy2] -
X.im[kFftLengthBy2] * G.re[kFftLengthBy2];
}
}
X_partition = 0;
limit = lim2;
} while (p < lim2);
}
// Produces the filter output (AVX2 variant).
void ApplyFilter_Avx2(const RenderBuffer& render_buffer,
size_t num_partitions,
const std::vector<std::vector<FftData>>& H,
FftData* S) {
RTC_DCHECK_GE(H.size(), H.size() - 1);
S->re.fill(0.f);
S->im.fill(0.f);
rtc::ArrayView<const std::vector<FftData>> render_buffer_data =
render_buffer.GetFftBuffer();
const size_t num_render_channels = render_buffer_data[0].size();
const size_t lim1 = std::min(
render_buffer_data.size() - render_buffer.Position(), num_partitions);
const size_t lim2 = num_partitions;
constexpr size_t kNumEightBinBands = kFftLengthBy2 / 8;
size_t X_partition = render_buffer.Position();
size_t p = 0;
size_t limit = lim1;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
for (size_t k = 0, n = 0; n < kNumEightBinBands; ++n, k += 8) {
const __m256 X_re = _mm256_loadu_ps(&X.re[k]);
const __m256 X_im = _mm256_loadu_ps(&X.im[k]);
const __m256 H_re = _mm256_loadu_ps(&H_p_ch.re[k]);
const __m256 H_im = _mm256_loadu_ps(&H_p_ch.im[k]);
const __m256 S_re = _mm256_loadu_ps(&S->re[k]);
const __m256 S_im = _mm256_loadu_ps(&S->im[k]);
const __m256 a = _mm256_mul_ps(X_re, H_re);
const __m256 b = _mm256_mul_ps(X_im, H_im);
const __m256 c = _mm256_mul_ps(X_re, H_im);
const __m256 d = _mm256_mul_ps(X_im, H_re);
const __m256 e = _mm256_sub_ps(a, b);
const __m256 f = _mm256_add_ps(c, d);
const __m256 g = _mm256_add_ps(S_re, e);
const __m256 h = _mm256_add_ps(S_im, f);
_mm256_storeu_ps(&S->re[k], g);
_mm256_storeu_ps(&S->im[k], h);
}
}
}
limit = lim2;
X_partition = 0;
} while (p < lim2);
X_partition = render_buffer.Position();
p = 0;
limit = lim1;
do {
for (; p < limit; ++p, ++X_partition) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
const FftData& X = render_buffer_data[X_partition][ch];
S->re[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] -
X.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
S->im[kFftLengthBy2] += X.re[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2] +
X.im[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2];
}
}
limit = lim2;
X_partition = 0;
} while (p < lim2);
}
} // namespace aec3
} // namespace webrtc

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h"
namespace webrtc {
namespace aec3 {
// Computes and stores the echo return loss estimate of the filter, which is the
// sum of the partition frequency responses.
void ErlComputer_AVX2(
const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2,
rtc::ArrayView<float> erl) {
std::fill(erl.begin(), erl.end(), 0.f);
for (auto& H2_j : H2) {
for (size_t k = 0; k < kFftLengthBy2; k += 8) {
const __m256 H2_j_k = _mm256_loadu_ps(&H2_j[k]);
__m256 erl_k = _mm256_loadu_ps(&erl[k]);
erl_k = _mm256_add_ps(erl_k, H2_j_k);
_mm256_storeu_ps(&erl[k], erl_k);
}
erl[kFftLengthBy2] += H2_j[kFftLengthBy2];
}
}
} // namespace aec3
} // namespace webrtc

View File

@ -0,0 +1,32 @@
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/fft_data.h"
namespace webrtc {
// Computes the power spectrum of the data.
void FftData::SpectrumAVX2(rtc::ArrayView<float> power_spectrum) const {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, power_spectrum.size());
for (size_t k = 0; k < kFftLengthBy2; k += 8) {
__m256 r = _mm256_loadu_ps(&re[k]);
__m256 i = _mm256_loadu_ps(&im[k]);
__m256 ii = _mm256_mul_ps(i, i);
ii = _mm256_fmadd_ps(r, r, ii);
_mm256_storeu_ps(&power_spectrum[k], ii);
}
power_spectrum[kFftLengthBy2] = re[kFftLengthBy2] * re[kFftLengthBy2] +
im[kFftLengthBy2] * im[kFftLengthBy2];
}
} // namespace webrtc

View File

@ -0,0 +1,261 @@
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "modules/audio_processing/aec3/matched_filter.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace aec3 {
// Let ha denote the horizontal of a, and hb the horizontal sum of b
// returns [ha, hb, ha, hb]
inline __m128 hsum_ab(__m256 a, __m256 b) {
__m256 s_256 = _mm256_hadd_ps(a, b);
const __m256i mask = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
s_256 = _mm256_permutevar8x32_ps(s_256, mask);
__m128 s = _mm_hadd_ps(_mm256_extractf128_ps(s_256, 0),
_mm256_extractf128_ps(s_256, 1));
s = _mm_hadd_ps(s, s);
return s;
}
void MatchedFilterCore_AccumulatedError_AVX2(
size_t x_start_index,
float x2_sum_threshold,
float smoothing,
rtc::ArrayView<const float> x,
rtc::ArrayView<const float> y,
rtc::ArrayView<float> h,
bool* filters_updated,
float* error_sum,
rtc::ArrayView<float> accumulated_error,
rtc::ArrayView<float> scratch_memory) {
const int h_size = static_cast<int>(h.size());
const int x_size = static_cast<int>(x.size());
RTC_DCHECK_EQ(0, h_size % 16);
std::fill(accumulated_error.begin(), accumulated_error.end(), 0.0f);
// Process for all samples in the sub-block.
for (size_t i = 0; i < y.size(); ++i) {
// Apply the matched filter as filter * x, and compute x * x.
RTC_DCHECK_GT(x_size, x_start_index);
const int chunk1 =
std::min(h_size, static_cast<int>(x_size - x_start_index));
if (chunk1 != h_size) {
const int chunk2 = h_size - chunk1;
std::copy(x.begin() + x_start_index, x.end(), scratch_memory.begin());
std::copy(x.begin(), x.begin() + chunk2, scratch_memory.begin() + chunk1);
}
const float* x_p =
chunk1 != h_size ? scratch_memory.data() : &x[x_start_index];
const float* h_p = &h[0];
float* a_p = &accumulated_error[0];
__m256 s_inst_hadd_256;
__m256 s_inst_256;
__m256 s_inst_256_8;
__m256 x2_sum_256 = _mm256_set1_ps(0);
__m256 x2_sum_256_8 = _mm256_set1_ps(0);
__m128 e_128;
float x2_sum = 0.0f;
float s_acum = 0;
const int limit_by_16 = h_size >> 4;
for (int k = limit_by_16; k > 0; --k, h_p += 16, x_p += 16, a_p += 4) {
// Load the data into 256 bit vectors.
__m256 x_k = _mm256_loadu_ps(x_p);
__m256 h_k = _mm256_loadu_ps(h_p);
__m256 x_k_8 = _mm256_loadu_ps(x_p + 8);
__m256 h_k_8 = _mm256_loadu_ps(h_p + 8);
// Compute and accumulate x * x and h * x.
x2_sum_256 = _mm256_fmadd_ps(x_k, x_k, x2_sum_256);
x2_sum_256_8 = _mm256_fmadd_ps(x_k_8, x_k_8, x2_sum_256_8);
s_inst_256 = _mm256_mul_ps(h_k, x_k);
s_inst_256_8 = _mm256_mul_ps(h_k_8, x_k_8);
s_inst_hadd_256 = _mm256_hadd_ps(s_inst_256, s_inst_256_8);
s_inst_hadd_256 = _mm256_hadd_ps(s_inst_hadd_256, s_inst_hadd_256);
s_acum += s_inst_hadd_256[0];
e_128[0] = s_acum - y[i];
s_acum += s_inst_hadd_256[4];
e_128[1] = s_acum - y[i];
s_acum += s_inst_hadd_256[1];
e_128[2] = s_acum - y[i];
s_acum += s_inst_hadd_256[5];
e_128[3] = s_acum - y[i];
__m128 accumulated_error = _mm_load_ps(a_p);
accumulated_error = _mm_fmadd_ps(e_128, e_128, accumulated_error);
_mm_storeu_ps(a_p, accumulated_error);
}
// Sum components together.
x2_sum_256 = _mm256_add_ps(x2_sum_256, x2_sum_256_8);
__m128 x2_sum_128 = _mm_add_ps(_mm256_extractf128_ps(x2_sum_256, 0),
_mm256_extractf128_ps(x2_sum_256, 1));
// Combine the accumulated vector and scalar values.
float* v = reinterpret_cast<float*>(&x2_sum_128);
x2_sum += v[0] + v[1] + v[2] + v[3];
// Compute the matched filter error.
float e = y[i] - s_acum;
const bool saturation = y[i] >= 32000.f || y[i] <= -32000.f;
(*error_sum) += e * e;
// Update the matched filter estimate in an NLMS manner.
if (x2_sum > x2_sum_threshold && !saturation) {
RTC_DCHECK_LT(0.f, x2_sum);
const float alpha = smoothing * e / x2_sum;
const __m256 alpha_256 = _mm256_set1_ps(alpha);
// filter = filter + smoothing * (y - filter * x) * x / x * x.
float* h_p = &h[0];
const float* x_p =
chunk1 != h_size ? scratch_memory.data() : &x[x_start_index];
// Perform 256 bit vector operations.
const int limit_by_8 = h_size >> 3;
for (int k = limit_by_8; k > 0; --k, h_p += 8, x_p += 8) {
// Load the data into 256 bit vectors.
__m256 h_k = _mm256_loadu_ps(h_p);
__m256 x_k = _mm256_loadu_ps(x_p);
// Compute h = h + alpha * x.
h_k = _mm256_fmadd_ps(x_k, alpha_256, h_k);
// Store the result.
_mm256_storeu_ps(h_p, h_k);
}
*filters_updated = true;
}
x_start_index = x_start_index > 0 ? x_start_index - 1 : x_size - 1;
}
}
void MatchedFilterCore_AVX2(size_t x_start_index,
float x2_sum_threshold,
float smoothing,
rtc::ArrayView<const float> x,
rtc::ArrayView<const float> y,
rtc::ArrayView<float> h,
bool* filters_updated,
float* error_sum,
bool compute_accumulated_error,
rtc::ArrayView<float> accumulated_error,
rtc::ArrayView<float> scratch_memory) {
if (compute_accumulated_error) {
return MatchedFilterCore_AccumulatedError_AVX2(
x_start_index, x2_sum_threshold, smoothing, x, y, h, filters_updated,
error_sum, accumulated_error, scratch_memory);
}
const int h_size = static_cast<int>(h.size());
const int x_size = static_cast<int>(x.size());
RTC_DCHECK_EQ(0, h_size % 8);
// Process for all samples in the sub-block.
for (size_t i = 0; i < y.size(); ++i) {
// Apply the matched filter as filter * x, and compute x * x.
RTC_DCHECK_GT(x_size, x_start_index);
const float* x_p = &x[x_start_index];
const float* h_p = &h[0];
// Initialize values for the accumulation.
__m256 s_256 = _mm256_set1_ps(0);
__m256 s_256_8 = _mm256_set1_ps(0);
__m256 x2_sum_256 = _mm256_set1_ps(0);
__m256 x2_sum_256_8 = _mm256_set1_ps(0);
float x2_sum = 0.f;
float s = 0;
// Compute loop chunk sizes until, and after, the wraparound of the circular
// buffer for x.
const int chunk1 =
std::min(h_size, static_cast<int>(x_size - x_start_index));
// Perform the loop in two chunks.
const int chunk2 = h_size - chunk1;
for (int limit : {chunk1, chunk2}) {
// Perform 256 bit vector operations.
const int limit_by_16 = limit >> 4;
for (int k = limit_by_16; k > 0; --k, h_p += 16, x_p += 16) {
// Load the data into 256 bit vectors.
__m256 x_k = _mm256_loadu_ps(x_p);
__m256 h_k = _mm256_loadu_ps(h_p);
__m256 x_k_8 = _mm256_loadu_ps(x_p + 8);
__m256 h_k_8 = _mm256_loadu_ps(h_p + 8);
// Compute and accumulate x * x and h * x.
x2_sum_256 = _mm256_fmadd_ps(x_k, x_k, x2_sum_256);
x2_sum_256_8 = _mm256_fmadd_ps(x_k_8, x_k_8, x2_sum_256_8);
s_256 = _mm256_fmadd_ps(h_k, x_k, s_256);
s_256_8 = _mm256_fmadd_ps(h_k_8, x_k_8, s_256_8);
}
// Perform non-vector operations for any remaining items.
for (int k = limit - limit_by_16 * 16; k > 0; --k, ++h_p, ++x_p) {
const float x_k = *x_p;
x2_sum += x_k * x_k;
s += *h_p * x_k;
}
x_p = &x[0];
}
// Sum components together.
x2_sum_256 = _mm256_add_ps(x2_sum_256, x2_sum_256_8);
s_256 = _mm256_add_ps(s_256, s_256_8);
__m128 sum = hsum_ab(x2_sum_256, s_256);
x2_sum += sum[0];
s += sum[1];
// Compute the matched filter error.
float e = y[i] - s;
const bool saturation = y[i] >= 32000.f || y[i] <= -32000.f;
(*error_sum) += e * e;
// Update the matched filter estimate in an NLMS manner.
if (x2_sum > x2_sum_threshold && !saturation) {
RTC_DCHECK_LT(0.f, x2_sum);
const float alpha = smoothing * e / x2_sum;
const __m256 alpha_256 = _mm256_set1_ps(alpha);
// filter = filter + smoothing * (y - filter * x) * x / x * x.
float* h_p = &h[0];
x_p = &x[x_start_index];
// Perform the loop in two chunks.
for (int limit : {chunk1, chunk2}) {
// Perform 256 bit vector operations.
const int limit_by_8 = limit >> 3;
for (int k = limit_by_8; k > 0; --k, h_p += 8, x_p += 8) {
// Load the data into 256 bit vectors.
__m256 h_k = _mm256_loadu_ps(h_p);
__m256 x_k = _mm256_loadu_ps(x_p);
// Compute h = h + alpha * x.
h_k = _mm256_fmadd_ps(x_k, alpha_256, h_k);
// Store the result.
_mm256_storeu_ps(h_p, h_k);
}
// Perform non-vector operations for any remaining items.
for (int k = limit - limit_by_8 * 8; k > 0; --k, ++h_p, ++x_p) {
*h_p += alpha * *x_p;
}
x_p = &x[0];
}
*filters_updated = true;
}
x_start_index = x_start_index > 0 ? x_start_index - 1 : x_size - 1;
}
}
} // namespace aec3
} // namespace webrtc

View File

@ -0,0 +1,81 @@
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include <math.h>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/vector_math.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace aec3 {
// Elementwise square root.
void VectorMath::SqrtAVX2(rtc::ArrayView<float> x) {
const int x_size = static_cast<int>(x.size());
const int vector_limit = x_size >> 3;
int j = 0;
for (; j < vector_limit * 8; j += 8) {
__m256 g = _mm256_loadu_ps(&x[j]);
g = _mm256_sqrt_ps(g);
_mm256_storeu_ps(&x[j], g);
}
for (; j < x_size; ++j) {
x[j] = sqrtf(x[j]);
}
}
// Elementwise vector multiplication z = x * y.
void VectorMath::MultiplyAVX2(rtc::ArrayView<const float> x,
rtc::ArrayView<const float> y,
rtc::ArrayView<float> z) {
RTC_DCHECK_EQ(z.size(), x.size());
RTC_DCHECK_EQ(z.size(), y.size());
const int x_size = static_cast<int>(x.size());
const int vector_limit = x_size >> 3;
int j = 0;
for (; j < vector_limit * 8; j += 8) {
const __m256 x_j = _mm256_loadu_ps(&x[j]);
const __m256 y_j = _mm256_loadu_ps(&y[j]);
const __m256 z_j = _mm256_mul_ps(x_j, y_j);
_mm256_storeu_ps(&z[j], z_j);
}
for (; j < x_size; ++j) {
z[j] = x[j] * y[j];
}
}
// Elementwise vector accumulation z += x.
void VectorMath::AccumulateAVX2(rtc::ArrayView<const float> x,
rtc::ArrayView<float> z) {
RTC_DCHECK_EQ(z.size(), x.size());
const int x_size = static_cast<int>(x.size());
const int vector_limit = x_size >> 3;
int j = 0;
for (; j < vector_limit * 8; j += 8) {
const __m256 x_j = _mm256_loadu_ps(&x[j]);
__m256 z_j = _mm256_loadu_ps(&z[j]);
z_j = _mm256_add_ps(x_j, z_j);
_mm256_storeu_ps(&z[j], z_j);
}
for (; j < x_size; ++j) {
z[j] += x[j];
}
}
} // namespace aec3
} // namespace webrtc

View File

@ -0,0 +1,117 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Parts of this file derived from Chromium's base/cpu.cc.
#include "rtc_base/system/arch.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#if defined(WEBRTC_ARCH_X86_FAMILY) && defined(_MSC_VER)
#include <intrin.h>
#endif
namespace webrtc {
// No CPU feature is available => straight C path.
int GetCPUInfoNoASM(CPUFeature feature) {
(void)feature;
return 0;
}
#if defined(WEBRTC_ARCH_X86_FAMILY)
#if defined(WEBRTC_ENABLE_AVX2)
// xgetbv returns the value of an Intel Extended Control Register (XCR).
// Currently only XCR0 is defined by Intel so `xcr` should always be zero.
static uint64_t xgetbv(uint32_t xcr) {
#if defined(_MSC_VER)
return _xgetbv(xcr);
#else
uint32_t eax, edx;
__asm__ volatile("xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
return (static_cast<uint64_t>(edx) << 32) | eax;
#endif // _MSC_VER
}
#endif // WEBRTC_ENABLE_AVX2
#ifndef _MSC_VER
// Intrinsic for "cpuid".
#if defined(__pic__) && defined(__i386__)
static inline void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile(
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type));
}
#else
static inline void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile("cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#endif
#endif // _MSC_VER
#endif // WEBRTC_ARCH_X86_FAMILY
#if defined(WEBRTC_ARCH_X86_FAMILY)
// Actual feature detection for x86.
int GetCPUInfo(CPUFeature feature) {
int cpu_info[4];
__cpuid(cpu_info, 1);
if (feature == kSSE2) {
return 0 != (cpu_info[3] & 0x04000000);
}
if (feature == kSSE3) {
return 0 != (cpu_info[2] & 0x00000001);
}
#if defined(WEBRTC_ENABLE_AVX2)
if (feature == kAVX2) {
int cpu_info7[4];
__cpuid(cpu_info7, 0);
int num_ids = cpu_info7[0];
if (num_ids < 7) {
return 0;
}
// Interpret CPU feature information.
__cpuid(cpu_info7, 7);
// AVX instructions can be used when
// a) AVX are supported by the CPU,
// b) XSAVE is supported by the CPU,
// c) XSAVE is enabled by the kernel.
// Compiling with MSVC and /arch:AVX2 surprisingly generates BMI2
// instructions (see crbug.com/1315519).
return (cpu_info[2] & 0x10000000) != 0 /* AVX */ &&
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
(xgetbv(0) & 0x00000006) == 6 /* XSAVE enabled by kernel */ &&
(cpu_info7[1] & 0x00000020) != 0 /* AVX2 */ &&
(cpu_info7[1] & 0x00000100) != 0 /* BMI2 */;
}
#endif // WEBRTC_ENABLE_AVX2
if (feature == kFMA3) {
return 0 != (cpu_info[2] & 0x00001000);
}
return 0;
}
#else
// Default to straight C for other platforms.
int GetCPUInfo(CPUFeature feature) {
(void)feature;
return 0;
}
#endif
} // namespace webrtc

View File

@ -0,0 +1,97 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <features.h>
#include <stdlib.h>
#include <string.h>
#ifdef __GLIBC_PREREQ
#define WEBRTC_GLIBC_PREREQ(a, b) __GLIBC_PREREQ(a, b)
#else
#define WEBRTC_GLIBC_PREREQ(a, b) 0
#endif
#if WEBRTC_GLIBC_PREREQ(2, 16)
#include <sys/auxv.h>
#else
#include <errno.h>
#include <fcntl.h>
#include <link.h>
#include <unistd.h>
#endif
#include "rtc_base/system/arch.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#if defined(WEBRTC_ARCH_ARM_FAMILY)
#include <asm/hwcap.h>
namespace webrtc {
uint64_t GetCPUFeaturesARM(void) {
uint64_t result = 0;
int architecture = 0;
uint64_t hwcap = 0;
const char* platform = NULL;
#if WEBRTC_GLIBC_PREREQ(2, 16)
hwcap = getauxval(AT_HWCAP);
platform = (const char*)getauxval(AT_PLATFORM);
#else
ElfW(auxv_t) auxv;
int fd = open("/proc/self/auxv", O_RDONLY);
if (fd >= 0) {
while (hwcap == 0 || platform == NULL) {
if (read(fd, &auxv, sizeof(auxv)) < (ssize_t)sizeof(auxv)) {
if (errno == EINTR)
continue;
break;
}
switch (auxv.a_type) {
case AT_HWCAP:
hwcap = auxv.a_un.a_val;
break;
case AT_PLATFORM:
platform = (const char*)auxv.a_un.a_val;
break;
}
}
close(fd);
}
#endif // WEBRTC_GLIBC_PREREQ(2, 16)
#if defined(__aarch64__)
(void)platform;
architecture = 8;
if ((hwcap & HWCAP_FP) != 0)
result |= kCPUFeatureVFPv3;
if ((hwcap & HWCAP_ASIMD) != 0)
result |= kCPUFeatureNEON;
#else
if (platform != NULL) {
/* expect a string in the form "v6l" or "v7l", etc.
*/
if (platform[0] == 'v' && '0' <= platform[1] && platform[1] <= '9' &&
(platform[2] == 'l' || platform[2] == 'b')) {
architecture = platform[1] - '0';
}
}
if ((hwcap & HWCAP_VFPv3) != 0)
result |= kCPUFeatureVFPv3;
if ((hwcap & HWCAP_NEON) != 0)
result |= kCPUFeatureNEON;
#endif
if (architecture >= 7)
result |= kCPUFeatureARMv7;
if (architecture >= 6)
result |= kCPUFeatureLDREXSTREX;
return result;
}
} // namespace webrtc
#endif // WEBRTC_ARCH_ARM_FAMILY